برنامه‌ریزی بهره‌برداری چند‌‌‌‌هدفه از شبکه توزیع به‌منظور بهبود عوامل اقتصادی و تاب‌آوری شبکه با در نظر گرفتن شرایط جوی

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 دانشجوی دکتری، گروه مهندسی برق، واحد شبستر، دانشگاه آزاد اسلامی، شبستر، ایران.

2 استادیار، گروه مهندسی برق، واحد شبستر، دانشگاه آزاد اسلامی، شبستر، ایران.

چکیده

مسئله بهینه‌سازی برنامه‌ریزی بهره‌برداری را می‌توان به دو گروه مختلف طبقه‌بندی کرد: گروه اول شامل برنامه‌ریزی در شرایط عادی با اهداف بهبود شاخص‌های اقتصادی و فنی و گروه دوم نیز برنامه‌ریزی در شرایط اضطراری با هدف بهبود پایداری و حفظ حداکثری بارهای شبکه می‌باشد. شرایط اضطراری ناشی از وضعیت جوی نامطلوب همواره یکی از معضلات شبکه‌ها به شمار می‌رود. در این مقاله برنامه‌ریزی عملیاتی بهینه مبتنی بر شرایط جوی و خروج احتمالاتی خطوط ارائه شده است تا علاوه بر بهبود تاب‌آوری شبکه، اپراتور شبکه را از کارکرد بهینه شبکه در شرایط نامساعد جوی مطمئن سازد. این امر از طریق ارتقای قابلیت انعطاف‌پذیری شبکه و مدل‌سازی تأثیرات شرایط جوی بر قطع خطوط و سپس برنامه‌ریزی مجدد منابع انرژی، ذخیره‌ساز‌های انرژی و بازنگری در توپولوژی شبکه انجام می‌شود. اهداف روش پیشنهادی شامل به‌حداقل‌رساندن هزینه‌های بهره‌برداری از شبکه، هزینه‌های انرژی تأمین‌نشده و حداکثر کردن مزایای مشارکت صاحبان منبع انرژی پراکنده و ذخیره‌سازهای انرژی با در نظر گرفتن شرایط جوی تعریف شده است. برای حل مسئله از الگوریتم بهینه‌سازی ترکیبی مبتنی بر الگوریتم ژنتیک و روش محدودیت اپسیلون با تصمیم‌گیرنده فازی برای انتخاب بهترین راه‌حل از مجموعه مطلوب پارتو استفاده شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Multi-Objective Operation Planning for a Distribution Network to Improve Economic Parameters and Network Resilience Considering Weather Conditions

نویسندگان [English]

  • Ali Khodadadi 1
  • Taher Abedinzadeh 2
  • Hasan Alipour 2
  • Jaber Pouladi 2
1 Ph.D. Student, Department of Electrical Engineering, Shabestar Branch, Islamic Azad University, Shabestar, Iran.
2 Assistant Professor, Department of Electrical Engineering, Shabestar Branch, Islamic Azad University, Shabestar, Iran.
چکیده [English]

The issue of operational planning optimization can be classified into two different groups. The first group includes planning under normal conditions with the aim of improving economic and technical indicators and the second group includes planning under emergency conditions with the aim of improving stability and protection of maximum network loads. Emergencies caused by adverse weather conditions are always one of the challenges of networks. In this paper, optimal operational planning based on weather conditions and probable line outages is presented to ensure the optimal operation of the network in adverse weather conditions in addition to improving network resilience. This was carried out by improving network flexibility, modeling the effects of weather conditions on line outages, and then rescheduling energy sources, energy storages, and reviewing network topology. The objectives of the proposed method defined include minimizing grid operating costs, energy supplly costs, and maximizing the benefit of participation of distributed energy source owners and energy storage by considering weather conditions. To solve the problem, a hybrid optimization algorithm based on genetic algorithm and Epsilon constraint method with fuzzy decision maker was used to select the best solution from Pareto optimal set.

کلیدواژه‌ها [English]

  • Multi
  • objective optimization Operation of smart grids Resilience enhancement Reconfiguration Weather condition
[1] Shahbazi, A., Aghaei, J., Pirouzi, S., Niknam, T., Shafie-Khah, M., & Catalão, J. P. S. (2021). Effects of resilience-oriented design on distribution networks operation planning. Electric Power Systems Research, 191(1), 106902. https://doi.org/10.1016/j.epsr.2020.106902
[2] Paktinat, M., Amirahmadi, M., Tolou-Askari, M., & Mousavizadeh, F. (2022). Optimal resilient operation of hub energy system considering uncertain parameters. Sustainable Energy, Grids and Networks, 30, 100618. https://doi.org/10.1016/j.segan.2022.100618
[3] Kia, A., Farzinfar, M., Amirahmadi, M., & Samieimoghaddam, M. (2022). A Resilience-Oriented Methodology for Transformation of the Distribution Networks into MicroGrid. International Transactions on Electrical Energy Systems, 2022, 1-15. https://doi.org/10. 1155/2022/6459044
[4] Lei, S., Chen, C., Song, Y., & Hou, Y. (2020). Radiality constraints for distribution system reconfiguration: Formulation and application to post-disturbance microgrid formation. IEEE Transactions on Smart Grid, 11(5), 3944-3956. https://doi.org/10.1109/TSG.2020.2985087
[5] Cai, S., Xie, Y., Wu, Q., & Xiang, Z. (2020). Robust MPC-based microgrid scheduling for resilience enhancement of distribution system. International Journal of Electrical Power & Energy Systems, 121(2), 106068. https://doi.org/10.1016/j.ijepes.2020.106068
[6] Jia, Y., Xu, Z., Lai, L. L., & Wong, K. P. (2016). Risk-Based Power System Security Analysis Considering Cascading Outages. IEEE Transactions on Industrial Informatics, 12(2), 872-882. https://doi.org/10.1109/TII.2015.2499718
[7] Asrari, A., Lotfifard, S., & Payam, M. S. (2016). Pareto Dominance-Based Multiobjective Optimization Method for Distribution Network Reconfiguration. IEEE Transactions on Smart Grid, 7(3), 1401-1410. https://doi.org/10.1109/TSG.2015.2468683
[8] Che, L., Zhang, X., Shahidehpour, M., Alabdulwahab, A., & Al-Turki, Y. (2017). Optimal Planning of Loop-Based Microgrid Topology. IEEE Transactions on Smart Grid, 8(4), 1771-1781. https://doi.org/10.1109/TSG.2015.2508058
[9] Arif, A., Wang, Z., Wang, J., & Chen, C. (2018). Power Distribution System Outage Management With Co-Optimization of Repairs, Reconfiguration, and DG Dispatch. IEEE Transactions on Smart Grid, 9(5), 4109-4118. https://doi.org/10.1109/TSG.2017.2650917
[10] Sabouhi, H., Doroudi, A., Fotuhi-Firuzabad, M., & Bashiri, M. (2021). Electricity distribution grids resilience enhancement by network reconfiguration. International Transactions on Electrical Energy Systems, 31(11), e13047. https://doi.org/10.1002/2050-7038.13047
[11] Lee, C., Liu, C., Mehrotra, S., & Bie, Z. (2015). Robust Distribution Network Reconfiguration. IEEE Transactions on Smart Grid, 6(2), 836-842. https://doi.org/10.1109/TSG.2014.2375 160
[12] Kavousi-Fard, A., Niknam, T., & Fotuhi-Firuzabad, M. (2015). Stochastic Reconfiguration and Optimal Coordination of V2G Plug-in Electric Vehicles Considering Correlated Wind Power Generation. IEEE Transactions on Sustainable Energy, 6(3), 822-830. http s://doi.org/10.1109/TSTE.2015.2409814
[13] Dorostkar-Ghamsari, M. R., Fotuhi-Firuzabad, M., Lehtonen, M., & Safdarian, A. (2016). Value of Distribution Network Reconfiguration in Presence of Renewable Energy Resources. IEEE Transactions on Power Systems, 31(3), 1879-1888. https:// doi.org/10.1109/TPWRS.2015.2457954
[14] Najafi, J., Anvari-Moghaddam, A., Mehrzadi, M., & Su, C. L. (2021). An Efficient Framework for Improving Microgrid Resilience Against Islanding With Battery Swapping Stations. IEEE Access, 9, 40008-40018. https://doi.org/10.1109/ACCESS.2021.3064218
[15] Shen, X., Shahidehpour, M., Zhu, S., Han, Y., & Zheng, J. (2018). Multi-Stage Planning of Active Distribution Networks Considering the Co-Optimization of Operation Strategies. IEEE Transactions on Smart Grid, 9(2), 1425-1433. https://doi.org/10.1109/TSG.2016.25 91586
[16] Mehri Arsoon, M., & Moghaddas-Tafreshi, S. M. (2020). Peer-to-peer energy bartering for the resilience response enhancement of networked microgrids. Applied Energy, 261, 114413. https://doi.org/10.1016/j.apenergy.2019.114413
[17] Nourollahi, R., Salyani, P., Zare, K., & Mohammadi-Ivatloo, B. (2021). Resiliency-oriented optimal scheduling of microgrids in the presence of demand response programs using a hybrid stochastic-robust optimization approach. International Journal of Electrical Power & Energy Systems, 128(1), 106723. https://doi.org/10.1016/j.ijepes.2020.106723
[18] Yodo, N., & Arfin, T. (2021). A resilience assessment of an interdependent multi-energy system with microgrids. Sustainable and Resilient Infrastructure, 6(1-2), 42-55. http s://doi.org/10.1080/23789689.2019.1710074
[19] Arjomandi-Nezhad, A., Fotuhi-Firuzabad, M., Moeini-Aghtaie, M., Safdarian, A., Dehghanian, P., & Wang, F. (2021). Modeling and Optimizing Recovery Strategies for Power Distribution System Resilience. IEEE Systems Journal, 15(4), 4725-4734. https://doi.org/10.1109/JSYST.2 020.3020058
[20] Fesagandis, H. S., Jalali, M., Zare, K., Abapour, M., & Karimipour, H. (2021). Resilient Scheduling of Networked Microgrids Against Real-Time Failures. IEEE Access, 9, 21443-21456. https://doi.org/10.1109/ACCESS.2021.3052653
[21] Salyani, P., Najafi Ravadanegh, S., & Mahdavi Tabatabaei, N. (2019). Optimal Scheduling of Networked-Microgrids to Resiliency Enhancement Under Uncertainty. In N. Mahdavi Tabatabaei, S. Najafi Ravadanegh, & N. Bizon (Eds.), Power Systems Resilience: Modeling, Analysis and Practice. Springer International Publishing. https://doi.org/10.1007/978-3-319-94442-5_6
[22] Ma, S., Li, S., Wang, Z., & Qiu, F. (2019). Resilience-Oriented Design of Distribution Systems. IEEE Transactions on Power Systems, 34(4), 2880-2891. https://doi.org/10.1109/TPWRS .2019.2894103
[23] Li, W., Xiong, X., & Zhou, J. (2009). Incorporating fuzzy weather-related outages in transmission system reliability assessment. Institution of Engineering and Technology generation, transmission & distribution, 3(1), 26-37. https://doi.org/10.1049/iet-gtd:20080 187
[24] Caswell, H. C., Forte, V. J., Fraser, J. C., Pahwa, A., Short, T., Thatcher, M., & Werner, V. G. (2011). Weather Normalization of Reliability Indices. IEEE Transactions on Power Delivery, 26(2), 1273-1279. https://doi.org/10.1109/TPWRD.2010.2078839
[25] Mohseni-Bonab, S. M., Rabiee, A., & Mohammadi-Ivatloo, B. (2016). Voltage stability constrained multi-objective optimal reactive power dispatch under load and wind power uncertainties: A stochastic approach. Renewable Energy, 85, 598-609. https:/ /doi.org/10.1016/j.renene.2015.07.021