بهینه‌سازی ضرایب مدل‌های تخمین مقاومت فشاری ستون‌های بتنی محصورشده با FRP با استفاده از الگوریتم نهنگ

نوع مقاله : مقاله پژوهشی (نظری)

نویسنده

عضو هیئت علمی، گروه مهندسی عمران، دانشگاه فنی و حرفه‌ای، تهران، ایران.

چکیده

محصور کردن ستون‌های بتن مسلح، یکی از رایج‌ترین روش‌های مقاوم‌سازی ستون‌ها می‌باشد. آزمایش‌های متعددی بر روی بتن­های محصورشده با ورقه­های پلیمری مسلح الیافی (FRP) انجام شده است. همچنین، مدل­های متعددی برای تعیین مقاومت فشاری نمونه­های استوانه­ای بتنی محصورشده با FRP ارائه شده است. اما در مطالعات گذشته مدل­های کمتری برای تعیین مقاومت فشاری بتن­های محصورشده با FRP دارای مقطع مربع و مستطیل ارائه گردیده است. مدل­های ارائه شده در مطالعات گذشته با تعداد محدود نمونه بوده است. بنابراین استفاده از این مدل­ها برای تخمین مقاومت فشاری انواع بتن­های محصورشده با انواع FRP ممکن است دارای دقت کافی نباشد. بنابراین ارائه مدلی که بتواند مقاومت فشاری این نمونه­ها را با دقت کافی تخمین بزند، یکی از نیازهای اساسی مهندسان طراح مقاوم­سازی سازه­های بتنی می­باشد. در این مطالعه ابتدا، پایگاه اطلاعات 485 نمونه آزمایشگاهی بتن محصورشده با انواع FRP دارای مقطع مربعی و مستطیلی، از مطالعات گذشته گردآوری گردید. با بررسی اولیه 44 نمونه پرت از این پایگاه حذف گردید. سپس، با استفاده از 70 درصد نمونه­های این پایگاه و الگوریتم نهنگ، ضرایب ثابت مدل­های مطالعات گذشته طوری بهینه شد که اختلاف بین مقاومت فشاری آزمایشگاهی و مدل­ها به حداقل برسد. بنابراین این مدل­های بهبود یافته می­تواند برای تخمین مقاومت فشاری انواع بتن­های محصورشده با FRP استفاده شود. با مقایسه شاخص­های آماری نمونه­هایی که در فرآیند آموزش دخیل نبوده­اند نتایج نشان می­دهد که خطای کلی به طور میانگین 27 درصد کاهش و ضریب همبستگی (R2) 3 درصد افزایش می­یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of Coefficients of FRP-Confined Concrete Columns Compressive Strength Estimation Models using Whale Algorithm

نویسنده [English]

  • Gholamreza Ahani
Assistant faculty member, Department of Civil Engineering, Technical and Vocational University (TVU), Tehran, Iran.
چکیده [English]

Confining reinforced concrete columns is one of the most conventional methods of column retrofit. Many tests have been conducted on fiber-reinforced polymer (FRP) confined concrete. Additionally, numerous models for determining the compressive strength of FRP-confined concrete cylindrical samples have been proposed. However, in earlier research, fewer models have been presented for determining the compressive strength of FRP-confined concrete with square and rectangular sections. Previous studies have offered models with a limited number of samples. As a result, using these models to estimate the compressive strength of various types of FRP-confined concrete might not be sufficiently precise. Therefore, one of the fundamental requirements for design engineers in retrofitting concrete structures is the presentation of a model capable of reliably estimating the compressive strength of these samples. Initially, the database for the present research was built using 485 laboratory samples of concrete confined with various types of FRP with square and rectangular sections from prior studies. Forty-four outlier samples were deleted from the database during the initial assessment. The constant coefficients of previous research models were then adjusted so as to minimize the discrepancy between laboratory compressive strength and models using 70% of the samples and the whale optimization algorithm. Therefore, these improved models might be used to estimate the compressive strength of several types of FRP-confined concrete. By comparing the statistical indices of samples that were not engaged in the training process, the results demonstrated that the total error decreased by 27 percent on average, and the correlation coefficient (R2) increased by 3 percent.

کلیدواژه‌ها [English]

  • Retrofit Confining Fiber
  • reinforced polymer (FRP) Square and rectangular columns Compressive strength Whale optimization algorithm
[1] Ahmad, S. H., Khaloot, A. R., & Irshaid, A. (1991). Behaviour of concrete spirally confined by fibreglass filaments. Magazine of Concrete Research, 43(156), 143-148. https://doi.org/10.1680/macr.1991.43.156.143
[2] Nanni, A., & Bradford, N. M. (1995). FRP jacketed concrete under uniaxial compression. Construction and Building Materials, 9(2), 115-124. https://doi.org/10.1016/0950-0618(95)00004-Y
[3] Ozbakkaloglu, T., Lim, J. C., & Vincent, T. (2013). FRP-confined concrete in circular sections: Review and assessment of stress–strain models. Engineering Structures, 49(122), 1068-1088. https://doi.org/10.1016/j.engstruct.2012.06.010
[4] Cao, Y., Wu, Y.-F., & Jiang, C. (2018). Stress-strain relationship of FRP confined concrete columns under combined axial load and bending moment. Composites Part B: Engineering, 134, 207-217. https://doi.org/10.1016/j.compositesb.2017.09.063
[5] Lam, L., & Teng, J. G. (2003). Design-Oriented Stress-Strain Model for FRP-Confined Concrete in Rectangular Columns. Journal of Reinforced Plastics and Composites, 22(13), 1149-1186. https://doi.org/10.1177/0731684403035429
[6] Ozbakkaloglu, T., & Oehlers, D. J. (2008). Concrete-Filled Square and Rectangular FRP Tubes under Axial Compression. Journal of Composites for Construction, 12(4), 469-477. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:4(469)
[7] Wang, L.-M., & Wu, Y.-F. (2008). Effect of corner radius on the performance of CFRP-confined square concrete columns: Test. Engineering Structures, 30(2), 493-505. https://doi.org/10.1016/j.engstruct.2007.04.016
[8] Wu, Y.-F., & Wei, Y.-Y. (2010). Effect of cross-sectional aspect ratio on the strength of CFRP-confined rectangular concrete columns. Engineering Structures, 32(1), 32-45. https://doi.org/10.1016/j.engstruct.2009.08.012
[9] Ilki, A., & Kumbasar, N. (2003). Compressive Behaviour of Carbon Fibre Composite Jacketed Concrete with Circular and Non-Circular Cross-Sections. Journal of Earthquake Engineering, 07(03), 381-406. https://doi.org/10.1142/s1363246903001140
[10] Youssef, M. N., Feng, M. Q., & Mosallam, A. S. (2007). Stress–strain model for concrete confined by FRP composites. Composites Part B: Engineering, 38(5), 614-628. https://doi.org/10.1016/j.compositesb.2006.07.020
[11] Wang, Z., Wang, D., Smith, S. T., & Lu, D. (2012). CFRP-Confined Square RC Columns. I: Experimental Investigation. Journal of Composites for Construction, 16(2), 150-160. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000245
[12] Moodi, Y., Mousavi, S. R., Ghavidel, A., Sohrabi, M. R., & Rashki, M. (2018). Using Response Surface Methodology and providing a modified model using whale algorithm for estimating the compressive strength of columns confined with FRP sheets. Construction and Building Materials, 183, 163-170. https://doi.org/10.1016 /j.conbuildmat.2018.06.081
[13] Wei, Y.-Y., & Wu, Y.-F. (2012). Unified stress–strain model of concrete for FRP-confined columns. Construction and Building Materials, 26(1), 381-392. https://doi. org/10.1016/j.conbuildmat.2011.06.037
[14] Toutanji, H., Han, M., Gilbert, J., & Matthys, S. (2010). Behavior of Large-Scale Rectangular Columns Confined with FRP Composites. Journal of Composites for Construction, 14(1), 62-71. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000051
[15] Pham, T. M., & Hadi, M. N. S. (2014). Stress Prediction Model for FRP Confined Rectangular Concrete Columns with Rounded Corners. Journal of Composites for Construction, 18(1), 04013019. https://doi.org/10.1061/(ASCE)CC.1943-5614.000 0407
[16] Harajli, M. H., Hantouche, E., & Soudki, K. (2006). Stress-strain model for fiber-reinforced polymer jacketed concrete columns. American Concrete Institute Structural Journal, 103(5), 672-682. https://www.researchgate.net/publication/279594470_Stress-strain _model_for_fiber-reinforced_polymer_jacketed_concrete_columns
[17] Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007
[18] Gharehchopogh, F. S., & Gholizadeh, H. (2019). A comprehensive survey: Whale Optimization Algorithm and its applications. Swarm and Evolutionary Computation, 48, 1-24. https://doi.org/10.1016/j.swevo.2019.03.004
[19] Kaveh, A., & Ghazaan, M. I. (2017). Enhanced whale optimization algorithm for sizing optimization of skeletal structures. Mechanics Based Design of Structures and Machines, 45(3), 345-362. https://doi.org/10.1080/15397734.2016.1213639
[20] Azizi, M., Ejlali, R. G., Mousavi Ghasemi, S. A., & Talatahari, S. (2019). Upgraded Whale Optimization Algorithm for fuzzy logic based vibration control of nonlinear steel structure. Engineering Structures, 192(1), 53-70. https://doi.org/10.1016/j. engstruct.2019.05.007
[21] Ghasemi, H., Sohrabi, M. R., & Moodi, Y. (2022). Proposing Models for Estimating the Compressive Strength of HSC and UHSC FRP-Confined Circular Concrete by Using Whale Algorithm. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 46(1), 67-76. https://doi.org/10.1007/s40996-021-00655-2
[22] Al-Salloum, Y. A. (2007). Influence of edge sharpness on the strength of square concrete columns confined with FRP composite laminates. Composites Part B: Engineering, 38(5-6), 640-650. https://doi.org/10.1016/j.compositesb.2006.06.019
[23] Benzaid, R., Chikh, N. E., & Mesbah, H. (2008). Behaviour of square concrete column confined with GFRP composite warp. Journal of Civil Engineering and Management, 14(2), 115-120. https://doi.org/10.3846/1392-3730.2008.14.6
[24] Campione, G. (2006). Influence of FRP wrapping techniques on the compressive behavior of concrete prisms. Cement and Concrete Composites, 28(5), 497-505. https://doi.org/10.1016/j.cemconcomp.2006.01.002
[25] Campione, G., Miraglia, N., & Scibilia, N. (2001). Comprehensive Behaviour Of RC Members Strengthened With Carbon Fiber Reinforced Plastic Layers. Wessex Institute of Technology Transactions on The Built Environment, 57, 397-406. https://doi.org/10.2495/ERES010381
[26] Carrazedo, R. (2002). Mechanisms of confinement and its implication in strengthening of concrete columns with FRP jacketing [PhD, University of Sao Paulo]. Brazil. https://pdfs.semanticscholar.org/a0c3/ab12250fe30f86b70ca23378604a5412ef2b.pdf
[27] Chaallal, O., Shahawy, M., & Hassan, M. (2003). Performance of Axially Loaded Short Rectangular Columns Strengthened with Carbon Fiber-Reinforced Polymer Wrapping. Journal of Composites for Construction, 7(3), 200-208. https://doi.org/ 10.1061/(ASCE)1090-0268(2003)7:3(200)
[28] Demers, M., & Neale, K. W. (1994, August 8-11). Strengthening of concrete columns with unidirectional composite sheets. Developments in short and medium span bridge engineering, Halifax, Nova Scotia. https://www.researchgate.net/publication/31864574 0_Strengthening_of_concrete_columns_with_unidirectional_composite_sheets
[29] Erdil, B., Akyuz, U., & Yaman, I. O. (2012). Mechanical behavior of CFRP confined low strength concretes subjected to simultaneous heating–cooling cycles and sustained loading. Materials and Structures, 45(1), 223-233. https://doi.org/10.161 7/s11527-011-9761-6
[30] Harries, K. A., & Carey, S. A. (2003). Shape and “gap” effects on the behavior of variably confined concrete. Cement and Concrete Research, 33(6), 881-890. https://doi.org/10.1016/S0008-8846(02)01085-2
[31] Hosotani, M., Kawashima, K., & Hoshikuma, J. (1997, March 10-11). A model for confinement effect for concrete cylinders confined by carbon fiber sheets. Workshop on Earthquake Engineering Frontiers in Transportation Facilities, Buffalo, New York. https://trid.trb.org/view/487424
[32] Ignatowski, P., & Kaminska, M. E. (2004). On the Effect of Confinement of Slender Reinforced Concrete Columns with CFRP Composites / Zum Einfluss der Behinderung der Querdehnung von schlanken bewehrten Betonstützen durch CFRP. Restoration of Buildings and Monuments, 10(1), 73-98. https://doi.org/10.1515/rbm-2004-5831
[33] Masia, M. J., Gale, T. N., & Shrive, N. G. (2004). Size effects in axially loaded square-section concrete prisms strengthened using carbon fibre reinforced polymer wrapping. Canadian Journal of Civil Engineering, 31(1), 1-13. https://doi.org/10.1139/l03-064
[34] Mirmiran, A., Shahawy, M., Samaan, M., Echary, H. E., Mastrapa, J. C., & Pico, O. (1998). Effect of Column Parameters on FRP-Confined Concrete. Journal of Composites for Construction, 2(4), 175-185. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(175)
[35] Modarelli, R., Micelli, F., & Manni, O. (2005). FRP-confinement of hollow concrete cylinders and prisms. In C. K. Shield (Ed.), Proceedings of the 7th International Symposium on Fiber Reinforced Polymer Reinforcement of Reinforced Concrete Structures. American Concrete Institute. https://citeseerx.ist.psu.edu/document?repid= rep1&type=pdf&doi=49718937a4ad41875b31327d3f7dd09b4a11c812
[36] Parvin, A., & Wang, W. (2001). Behavior of FRP Jacketed Concrete Columns under Eccentric Loading. Journal of Composites for Construction, 5(3), 146-152. https:// doi.org/10.1061/(ASCE)1090-0268(2001)5:3(146)
[37] Rochette, P., & Labossière, P. (2000). Axial Testing of Rectangular Column Models Confined with Composites. Journal of Composites for Construction, 4(3), 129-136. https://doi.org/10.1061/(ASCE)1090-0268(2000)4:3(129)
[38] Rousakis, T. C., Karabinis, A. I., & Kiousis, P. D. (2007). FRP-confined concrete members: Axial compression experiments and plasticity modelling. Engineering Structures, 29(7), 1343-1353. https://doi.org/10.1016/j.engstruct.2006.08.006
[39] Rousakis, T. C., & Karabinis, A. I. (2012). Adequately FRP confined reinforced concrete columns under axial compressive monotonic or cyclic loading. Materials and Structures, 45(7), 957-975. https://doi.org/10.1617/s11527-011-9810-1
[40] Shehata, I. A. E. M., Carneiro, L. A. V., & Shehata, L. C. D. (2002). Strength of short concrete columns confined with CFRP sheets. Materials and Structures, 35(1), 50-58. https://doi.org/10.1007/BF02482090
[41] Suter, R., & Pinzelli, R. (2001, July 16-18). Confinement of concrete columns with FRP sheets. The Proceedings of the 5th International Conference on Fibre Reinforced Plastics for Reinforced Concrete Structures, Cambridge, England. http://www-civ.eng.cam.ac.uk/frprcs5/proceedings.htm
[42] Tao, Z., Yu, Q., & Zhong, Y.-Z. (2008). Compressive behaviour of CFRP-confined rectangular concrete columns. Magazine of Concrete Research, 60(10), 735-745. https://doi.org/10.1680/macr.2007.00115
[43] Wang, Y.-f., & Wu, H.-l. (2010). Experimental Investigation on Square High-Strength Concrete Short Columns Confined with AFRP Sheets. Journal of Composites for Construction, 14(3), 346-351. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000090
[44] Wang, Y.-f., & Wu, H.-l. (2011). Size Effect of Concrete Short Columns Confined with Aramid FRP Jackets. Journal of Composites for Construction, 15(4), 535-544. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000178
[45] Wang, Z., Wang, D., & Smith, S. T. (2012, February 2-4). Size effect of square concrete columns confined with CFRP wraps. Proceedings of the 3rd Asia-Pacific Conference on FRP in Structures, Hokkaido University, Sapporo, Japan. https://researchportal. scu.edu.au/esploro/outputs/ conferencePresentation/Size-effect-of-square-concrete-columns/991012820330602368
[46] Yan, Z., Pantelides, C. P., & Reaveley, L. D. (2006). Fiber-reinforced polymer jacketed and shape-modified compression members: I-experimental behavior. American Concrete Institute Structural Journal, 103(6), 885-893. https://www.proquest.com/openview/ be55840d589efcf5ebb459d1b47e1835/1?pq-origsite=gscholar&cbl=36963
[47] Yeh, F. Y., & Chang, K. C. (2012). Size and Shape Effects on Strength and Ultimate Strain in FRP Confined Rectangular Concrete Columns. Journal of Mechanics, 28(4), 677-690. https://doi.org/10.1017/jmech.2012.118
[48] Zhang, D. J., Wang, Y. F., & Ma, Y. S. (2010). Compressive behaviour of FRP-confined square concrete columns after creep. Engineering Structures, 32(8), 1957-1963. https://doi.org/10.1016/j.engstruct.2010.02.023
[49] Ozbakkaloglu, T. (2013). Behavior of square and rectangular ultra high-strength concrete-filled FRP tubes under axial compression. Composites Part B: Engineering, 54(1), 97-111. https://doi.org/10.1016/j.compositesb.2013.05.007
[50] Ozbakkaloglu, T. (2013). Axial Compressive Behavior of Square and Rectangular High-Strength Concrete-Filled FRP Tubes. Journal of Composites for Construction, 17(1), 151-161. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000321
[51] Louk Fanggi, B. A., & Ozbakkaloglu, T. (2015). Square FRP–HSC–steel composite columns: Behavior under axial compression. Engineering Structures, 92, 156-171. https://doi.org/10.1016/j.engstruct.2015.03.005
[52] Fallah Pour, A., Gholampour, A., Zheng, J., & Ozbakkaloglu, T. (2019). Behavior of FRP-confined high-strength concrete under eccentric compression: Tests on concrete-filled FRP tube columns. Composite Structures, 220, 261-272. https://doi. org/10.1016/j.compstruct.2019.03.031
[53] Demir, U., Sahinkaya, Y., Ispir, M., & Ilki, A. (2018). Assessment of axial behavior of circular HPFRCC members externally confined with FRP sheets. Polymers, 10(2), 1-14. https://doi.org/10.3390/polym10020138
[54] Ozbakkloglu, T. (2014). Ultra-high-strength concrete-filled FRP tubes: compression tests on square and rectangular columns. Key Engineering Materials, 575-576, 239-244. https://doi.org/10.4028/www.scientific.net/KEM.575-576.239
[55] Mirjalili, S., & Lewis, A. (2016). The Whale Optimization Algorithm. Advances in Engineering Software, 95, 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008
[56] Ben Seghier, M. E. A., Corriea, J. A. F. O., Jafari-Asl, J., Malekjafarian, A., Plevris, V., & Trung, N.-T. (2021). On the modeling of the annual corrosion rate in main cables of suspension bridges using combined soft computing model and a novel nature-inspired algorithm. Neural Computing and Applications, 33(23), 15969-15985. https://doi.org/10.1007/s00521-021-06199-w
[57] El Amine Ben Seghier, M., Keshtegar, B., Tee, K. F., Zayed, T., Abbassi, R., & Trung, N. T. (2020). Prediction of maximum pitting corrosion depth in oil and gas pipelines. Engineering Failure Analysis, 112, 104505. https://doi.org/10.1016/j. engfailanal.2020.104505