تحلیل آماری پی‌‌های رینگی تقویت‌شده با دیواره قائم مستقر بر خاک‌‌های ماسه‌ای

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 عضو هیات علمی، گروه مهندسی عمران،‌ دانشگاه فنی و حرفه‌ای، تهران، ایران.

2 استادیار، گروه ریاضی،‌ دانشگاه فنی و حرفه‌ای، تهران، ایران.

چکیده

در این مقاله، افزایش ظرفیت باربری پی دایره‌ای و رینگی مستقر بر روی خاک ماسه‌ای بررسی شده است. بنابراین به‌منظور نیل به این هدف، از دیواره‌های تقویت‌کننده‌ قائم برای افزایش ظرفیت باربری شالوده، استفاده شده است. در این راستا، ‌مدل‌سازی عددی به‌صورت تقارن محوری و برپایه‌ تحلیل حدی المان محدود و با درنظر گرفتن حد پایین و حد بالا انجام شده است. برای دستیابی به نتایج دقیق، بیش از هزار ‌مدل‌سازی در فضای نرم‌افزاری OptumG2 انجام شده است. برای بررسی تأثیر تغییرات ایجاد شده بر ظرفیت باربری پی رینگی، پارامترهای سازه‌‌ای و ژئوتکنیکی مدنظر قرار گرفته است. این عوامل شامل زاویه‌ اصطکاک داخلی خاک، ضریب تماسی سازه و خاک، نسبت‌‌های شعاعی متفاوت در پی رینگی و طول دیواره‌ تقویت‌کننده‌ قائم‌ می‌باشند. نتایج حاصل از پژوهش، به‌صورت نمودارهای بی‌بعد شده‌ طراحی، ارائه شده است. همچنین با استفاده از تحلیل‌‌های آماری، رابطه‌ رگرسیون غیرخطی به‌منظور محاسبه‌ مقادیر ظرفیت باربری در پی رینگی، پیشنهاد شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Statistical Analysis of the Skirted Ring Footings Located on Sandy Soil

نویسندگان [English]

  • Ramin Vali 1
  • Mahmood Parsamanesh 2
1 Faculty Member, Department of Civil Engineering, Technical and Vocational University (TVU), Tehran, Iran.
2 Assistant Professor, Department of Mathematics, Technical and Vocational University (TVU), Tehran, Iran.
چکیده [English]

In this paper, the increased bearing capacity of the circular and ring footings in sandy soil was investigated. Therefore, vertical skirts were used to increase the bearing capacity of the footing. In this regard, axisymmetric numerical modeling was performed using the lower and the upper bounds of the Finite Element Limit Analysis (FELA). More than 1,000 simulations were performed using OptumG2 software to ensure accurate results. The impact of different parameters on the bearing capacity of the ring footing was studied by considering structural and geotechnical parameters. The factors included the soil's internal friction angle, interaction coefficient between the footing and the soil, radius ratio of the ring footing, and vertical skirt length. Dimensionless design charts were used to present the research results. Additionally, statistical analysis was employed to derive a nonlinear regression equation for calculating the bearing capacity of the ring footings.

کلیدواژه‌ها [English]

  • Ring footing
  • Finite element limit analysis (FELA)
  • Statistical analysis
  • Sandy soil
  • skirted footing
  • Bearing capacity
[1] Benmebarek, S., Remadna, M. S., Benmebarek, N., & Belounar, L. (2012). Numerical evaluation of the bearing capacity factor Nγ′ of ring footings. Computers and Geotechnics, 44, 132-138. https://doi.org/10.1016/j.compgeo.2012.04.004
[2] Kumar, J., & Ghosh, P. (2005). Bearing capacity factor Nγ for ring footings using the method of characteristics. Canadian Geotechnical Journal, 42(5), 1474-1484. https://doi.org/10.1139/t05-051
[3] Lee, J. K., Jeong, S., & Lee, S. (2016). Undrained bearing capacity factors for ring footings in heterogeneous soil. Computers and Geotechnics, 75, 103-111. https://d oi.org/10.1016/j.compgeo.2016.01.021
[4] Seyedi Hosseininia, E. (2016). Bearing Capacity Factors of Ring Footings. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 40(2), 121-132. https://doi.org/10.1007/s40996-016-0003-6
[5] Keshavarz, A., & Kumar, J. (2017). Bearing capacity computation for a ring foundation using the stress characteristics method. Computers and Geotechnics, 89, 33-42. https://doi.org/10.1016/j.compgeo.2017.04.006
[6] Gholami, H., & Hosseininia, E. S. (2017). Bearing Capacity Factors of Ring Footings by Using the Method of Characteristics. Geotechnical and Geological Engineering, 35(5), 2137-2146. https://doi.org/10.1007/s10706-017-0233-9
[7] Remadna, M. S., Benmebarek, S., & Benmebarek, N. (2017). Numerical evaluation of the bearing capacity factor N’c of circular and ring footings. Geomechanics and Geoengineering, 12(1), 1-13. https://doi.org/10.1080/17486025.2016.1153729
[8] Sharma, V., & Kumar, A. (2018). Behavior of ring footing resting on reinforced sand subjected to eccentric-inclined loading. Journal of Rock Mechanics and Geotechnical Engineering, 10(2), 347-357. https://doi.org/10.1016/j.jrmge.2017.11.005
[9] Vali, R., Beygi, M., Saberian, M., & Li, J. (2019). Bearing capacity of ring foundation due to various loading positions by finite element limit analysis. Computers and Geotechnics, 110, 94-113. https://doi.org/10.1016/j.compgeo.2019.02.020
[10] Keshavarz, A., & Kumar, J. (2021). Bearing Capacity of Ring Foundations over Rock Media. Journal of Geotechnical and Geoenvironmental Engineering, 147(6), 04021027. https://doi.org/10.1061/(asce)gt.1943-5606.0002517
[11] Prasad, S. D., & Chakraborty, M. (2021). Bearing capacity of ring footing resting on two layered soil. Computers and Geotechnics, 134(4), 104088. https://doi.org/10.1016/j.comp geo.2021.104088
[12] Hu, Y., Randolph, M. F., & Watson, P. G. (1999). Bearing Response of Skirted Foundation on Nonhomogeneous Soil. Journal of Geotechnical and Geoenvironmental Engineering, 125(11), 924-935. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:11(924)
[13] Rezazadeh, S., & Eslami, A. (2018). Bearing capacity of semi-deep skirted foundations on clay using stress characteristics and finite element analyses. Marine Georesources & Geotechnology, 36(6), 625-639. https://doi.org/10.1080/1064119X.2017.1361488
[14] Vulpe, C., Bienen, B., & Gaudin, C. (2013). Predicting the undrained capacity of skirted spudcans under combined loading. Ocean Engineering, 74, 178-188. https:/ /doi.org/10.1016/j.oceaneng.2013.06.027
[15] Yun, G., & Bransby, M. F. (2007). The Undrained Vertical Bearing Capacity of Skirted Foundations. Soils and Foundations, 47(3), 493-505. https://doi.org/10.3208/sandf.47.49 3
[16] Zou, X., Hu, Y., Hossain, M. S., & Zhou, M. (2018). Capacity of skirted foundations in sand-over-clay under combined V-H-M loading. Ocean Engineering, 159, 201-218. https://doi.org/10.1016/j.oceaneng.2018.04.007
[17] Bienen, B., Gaudin, C., Cassidy, M. J., Rausch, L., Purwana, O. A., & Krisdani, H. (2012). Numerical modelling of a hybrid skirted foundation under combined loading. Computers and Geotechnics, 45(4), 127-139. https://doi.org/10.1016/j.co mpgeo.2012.05.009
[18] Al-Aghbari, M. Y., & Dutta, R. K. (2008). Performance of square footing with structural skirt resting on sand. Geomechanics and Geoengineering, 3(4), 271-277. https://do i.org/10.1080/17486020802509393
[20] Mana, D. S. K., Gourvenec, S. M., Randolph, M. F., & Hossain, M. S. (2012). Failure mechanisms of skirted foundations in uplift and compression. International Journal of Physical Modelling in Geotechnics, 12(2), 47-62. https://doi.org/10.168 0/ijpmg.11.00007
[21] Eid, H. T. (2013). Bearing Capacity and Settlement of Skirted Shallow Foundations on Sand. International Journal of Geomechanics, 13(5), 645-652. https://doi.org/10.1 061/(ASCE)GM.1943-5622.0000237
[22]  Pal, A., Ghosh, P., & Majumder, M. (2017). Interaction Effect of Two Closely Spaced Skirted Strip Foundations in Cohesionless Soil Using Upper-Bound Limit Analysis. International Journal of Geomechanics, 17(2), 06016022. https://doi.org /10.1061/(ASCE)GM.1943-5622.0000755
[23]  Al-Aghbari, M. Y., & Mohamedzein, Y. E. A. (2020). The use of skirts to improve the performance of a footing in sand. International Journal of Geotechnical Engineering, 14(2), 134-141. https://doi.org/10.1080/19386362.2018.1429702
[24] Khatri, V. N., & Kumar, J. (2019). Finite-Element Limit Analysis of Strip and Circular Skirted Footings on Sand. International Journal of Geomechanics, 19(3), 06019001. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001370
[25] Beygi, M., Vali, R., & Keshavarz, A. (2022). Pseudo-static bearing capacity of strip footing with vertical skirts resting on cohesionless slopes by finite element limit analysis. Geomechanics and Geoengineering, 17(2), 485-498. https://doi.org/10.1 080/17486025.2020.1794058
[26] Jahandari, S., Saberian, M., Zivari, F., Li, J., Ghasemi, M., & Vali, R. (2019). Experimental study of the effects of curing time on geotechnical properties of stabilized clay with lime and geogrid. International Journal of Geotechnical Engineering, 13(2), 172-183. https://doi.org/10.1080/19386362.2017.1329259
[27] Vali, R. (2021). Water Table Effects on the Behaviors of the Reinforced Marine Soil-footing System. Journal of Human, Earth, and Future, 2(3), 296-305. https://doi.o rg/10.28991/hef-2021-02-03-09
[28] Vali, R., Saberian, M., Li, J., Shams, G., & Gelder, P. V. (2018). Properties of geogrid-reinforced marine slope due to the groundwater level changes. Marine Georesources & Geotechnology, 36(6), 735-748. https://doi.org/10.1080/1064119X.2017.1386741
[29] Yousefi, H., & Marandi, S. M. (2021). The effect of geo-grid plates on vertical displacement and shearing force on foundation using finite element method and two dimensional PLAXIS software. Karafan Quarterly Scientific Journal, 19(1), -. https://doi.org/1 0.48301/kssa.2021.275662.1411
[30] Shiau, J., Merifield, R., Lyamin, A., & Sloan, S. (2011). Undrained stability of footings on slopes. International Journal of Geomechanics, 11(5), 381-390. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000092
[31] Shabani, M., Farokhzad, F., & Shojaei, F. (2019). Numerical analysis of the effects of clay blanket and cut-off wall on reducing seepage from earth dam foundation. Karafan Quarterly Scientific Journal, 16(1), 107-126. https://karafan.tvu.ac.ir/artic le_100535_63c766dbb68ddeb4f0903fb27b2e78c6.pdf
[32] Optum Computational Engineering. (2015). OptumG2 v. 2015 (Version 2015) [Computer software]. Optum Computational Engineering 2015. https://optumce.com/?s=OptumG2+ 2015
[33] Beygi, M., Keshavarz, A., Abbaspour, M., Vali, R., Saberian, M., & Li, J. (2022). Finite element limit analysis of the seismic bearing capacity of strip footing adjacent to excavation in c-φ soil. Geomechanics and Geoengineering, 17(1), 246-259. https:/ /doi.org/10.1080/17486025.2020.1728396
[34] Beygi, M., Keshavarz, A., Abbaspour, M., & Vali, R. (2020). 3D numerical study of the piled raft behaviour due to groundwater level changes in the frictional soil. International Journal of Geotechnical Engineering, 14(6), 665-672. https://doi.org /10.1080/19386362.2019.1677326
[35] Beygi, M., Vali, R., Porhoseini, R., Keshavarz, A., & Maleksaeedi, E. (2021). The effect of rotational stiffness on the behaviour of retaining wall. International Journal of Geotechnical Engineering, 15(7), 845-856. https://doi.org/10.1080/193 86362.2018.1517927
[36] Vali, R., Mehrinejad Khotbehsara, E., Saberian, M., Li, J., Mehrinejad, M., & Jahandari, S. (2019). A three-dimensional numerical comparison of bearing capacity and settlement of tapered and under-reamed piles. International Journal of Geotechnical Engineering, 13(3), 236-248. https://doi.org/10.1080/19386362.2017.1336586
[37] Vali, R., Saberian, M., Beygi, M., Porhoseini, R., & Abbaspour, M. (2020). Numerical Analysis of Laterally Loaded Single-Pile Behavior Affected by Urban Metro Tunnel. Indian Geotechnical Journal, 50(3), 410-425. https://doi.org/10.1007/s400 98-019-00375-5
[38] Vali, R., Shams, G., Porhoseini, R., Boroujeni, M., & Saberian, & Beygi, M. (2019). Lateral behavior of pile located on top of a slope. Australian Geomechanics Journal, 54(1), 103-114. https://australiangeomechanics.org/papers/lateral-behavio ur-of-pile-located-on-top-of-a-slope/
[39] Bowles, J. E. (1997). Foundation Analysis and Design (5 ed.). McGraw-Hill. https://bo oks.google.com/books/about/Foundation_Analysis_and_Design.html?id=iuBwtgAACAAJ
[40] Keshavarz, A., Beygi, M., & Vali, R. (2019). Undrained seismic bearing capacity of strip footing placed on homogeneous and heterogeneous soil slopes by finite element limit analysis. Computers and Geotechnics, 113, 103094. https://doi.org/1 0.1016/j.compgeo.2019.103094
[41] Ukritchon, B., Whittle, A. J., & Klangvijit, C. (2003). Calculations of bearing capacity factor N γ using numerical limit analyses. Journal of Geotechnical and Geoenvironmental Engineering, 129(5), 468-474. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:6(4 68)
[42] Kumar, J., & Kouzer, K. M. (2007). Effect of Footing Roughness on Bearing Capacity Factor Ng. Journal of Geotechnical and Geoenvironmental Engineering, 133(5), 502-511. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:5(502)
[43] Veiskarami, M., Chenari, R. J., & Jameei, A. A. (2017). Bearing Capacity of Strip Footings on Anisotropic Soils by the Finite Elements and Linear Programming. International Journal of Geomechanics, 17(12), 04017119. https://doi.org/10.1061 /(ASCE)GM.1943-5622.0001018
[44] Kumar, J. (2009). The variation of Nγ with footing roughness using the method of characteristics. International Journal for Numerical and Analytical Methods in Geomechanics, 33(2), 275-284. https://doi.org/10.1002/nag.716
[45] Aliakbari, K., Saberi, M. R., & Andalib, M. (2021). Applying Taguchi method to optimize EDM parameters on Inconel 718 super alloy. Karafan Quarterly Scientific Journal, 17(4), 163-180. https://doi.org/10.48301/kssa.2021.128402
[46] International Business Machines. (2019). IBM SPSS Statistics (Version 26) [Computer software]. IBM. https://www.ibm.com/support/pages/downloading-ibm-spss-statis tics-26