تأثیر پارامترهای فرایند جوشکاری لیزری بر استحکام کششی جوش نانوکامپوزیت پلی‌پروپیلن/ اتیلن‌پروپیلن‌دی‌ان‌مونومر/ خاک رس با استفاده از روش پاسخ ‌سطح

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 استادیار، دانشکده مکانیک و انرژی، دانشگاه شهید بهشتی، تهران، ایران.

2 کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران.

3 دانشیار، دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران.

چکیده

نانوکامپوزیت پلی‌پروپیلن/ اتیلن-پروپیلن- دی­ان­مونومر/ خاک رس به دلیل تعادل در خواص مکانیکی استحکام کشش و ضربه، به‌طور گسترده در صنعت مورد توجه قرار گرفته است. بنابراین مطالعه جوش‌پذیری آنها ضروری است. جوشکاری لیزری به‌عنوان یک روش اتصال، برای جوشکاری لب­به­لب این نانوکامپوزیت‌ها استفاده می‌شود. در این مطالعه تأثیر متغیرهای ورودی مثل مقدار نانوذرات خاک رس، توان لیزر، سرعت جوشکاری و فاصله کانونی برای دستیابی به بهترین پاسخ‌ها (بهترین استحکام کششی جوش­ها) در چند سطح بررسی شد. روش پاسخ­سطح برای بررسی تأثیر پارامترهای ورودی بر استحکام کششی جوش‌ها به‌کار گرفته شده است. نتایج نشان داد که افزایش مقدار نانوذره رس از مقدار 0 تا 6 درصد وزنی و افزایش فاصله کانونی از 5 تا 8 میلی‌متر به‌ترتیب باعث کاهش استحکام کششی از 6/9 به 1/6 و 19/9 به 36/8 مگاپاسکال می‌شود. مدل‌ها نشان داد که در توان 100 وات و محدوده سرعتی 400 تا 750 میلی‌متر بر دقیقه و فاصله کانونی 5 تا 5/6 میلی‌متر جوش‌هایی با استحکام 8 تا 9/9 مگاپاسکال به‌دست می‌آید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Process Parameters of Laser Welding on Tensile Strength of PP/EPDM/Clay Nanocomposite Welds Using Response Surface Methodology

نویسندگان [English]

  • Mohammad Reza Nakhaei 1
  • Ali Ahmadi 2
  • Nasrallah Bani Mostafa Arab 3
1 Assistant Professor, Faculty of Mechanics and Energy, Shahid Beheshti University, Tehran, Iran.
2 MSc Student, Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran.
3 Associate Professor, Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran.
چکیده [English]

Polypropylene/ ethylene–propylene-diene monomer/ Nanoclay (PP/EPDM/ Nanoclay) nanocomposite with different loadings of clay content is used in many industries because of balance on the tensile and impact strengths. Laser welding, as a fabrication method, is applied to the butt-welding of these nanocomposites. The input parameters (clay content, laser power, scan velocity, and stand-off-distance) were varied to achieve the best responses (tensile strength of welds). Response surface methodology (RSM) was utilized to relate the input parameters and the response. The effects of all input parameters on the responses were investigated. Results demonstrated that increasing the clay content from 0 to 6 wt% and increasing stand-off-distance from 5 to 8 mm decreased the tensile strength from 9.6 MPa to 6.1 MPa and 9.19 MPa to 8.36 MPa, respectively. The models showed that laser power of 100 W, traverse speed of 400–750 mm min21, and stand-off-distance of 5 – 6.5 mm, led to weld strength from 8 to 9.9 MPa. 

کلیدواژه‌ها [English]

  • PP/EPDM/ Clay
  • Laser welding
  • Weld strength
  • Responce surface methodology (RSM)
  • Nanocomposite
[1] Asgari Aghdam, A., DadgarAsl, Y., & Sheikhi, M. (2021). Investigation of the effect of process variables on the mechanical properties of printed parts made of polyoxymethylene using a 3D printer by Fused Deposition Modeling (FDM). Karafan Quarterly Scientific Journal, 18(1), 169-188. https://doi.org/10.48301/kssa.2021.131056
[2] Nakhaei, M. R., Mostafapour, A., Dubois, C., Naderi, G., & Ghoreishy, M. H. R. (2019). Study of morphology and mechanical properties of PP/EPDM/clay nanocomposites prepared using twin-screw extruder and friction stir process. Polymer Composites, 40(8), 3306-3314. https://doi.org/10.1002/pc.25188
[3] Ercan, N., Durmus, A., & Kaşgöz, A. (2017). Comparing of melt blending and solution mixing methods on the physical properties of thermoplastic polyurethane/organoclay nanocomposite films. Journal of Thermoplastic Composite Materials, 30(7), 950-970. htt ps://doi.org/10.1177/0892705715614068
[4] Haghnegahdar, M., Naderi, G., & Ghoreishy, M. H. R. (2017). Microstructure and Mechanical Properties of Nanocomposite Based on Polypropylene/Ethylene Propylene Diene Monomer/Graphene. International Polymer Processing, 32(1), 72-83. https://doi.org/10. 3139/217.3286
[5] Moghri, M., Zanjanijam, A. R., Seifi, L., & Ramezani, M. (2017). An Investigation on Rheological Behavior of the PVC/NBR/Nanoclay Nanocomposites by Torque Rheometry: The Effects of Formulation Variables Using Response Surface Approach. Journal of Inorganic and Organometallic Polymers and Materials, 27(1), 264-273. https://doi.org/10. 1007/s10904-017-0682-x
[6] Izzati Zulkifli, N., Samat, N., Anuar, H., & Zainuddin, N. (2015). Mechanical properties and failure modes of recycled polypropylene/microcrystalline cellulose composites. Materials & Design, 69, 114-123. https://doi.org/10.1016/j.matdes.2014.12.053
[7] Khodabandelou, M., Razavi Aghjeh, M. K., Khonakdar, H. A., & Mehrabi Mazidi, M. (2017). Effect of localization of carbon nanotubes on fracture behavior of un-vulcanized and dynamically vulcanized PP/EPDM/MWCNT blend-nanocomposites. Composites Science and Technology, 149, 134-148. https://doi.org/10.1016/j.compscitech.201 7.06.003
[8] Haghnegahdar, M., Naderi, G., & Ghoreishy, M. H. R. (2017). Fracture toughness and deformation mechanism of un-vulcanized and dynamically vulcanized polypropylene/ethylene propylene diene monomer/graphene nanocomposites. Composites Science and Technology, 141, 83-98. https://doi.org/10.1016/j.compscitech.2017.01.015
[9] Mostafapour, A., Naderi, G., & Nakhaei, M. R. (2018). Effect of process parameters on fracture toughness of PP/EPDM/nanoclay nanocomposite fabricated by novel method of heat assisted Friction stir processing. Polymer Composites, 39(7), 2336-2346. https://doi.org/10.1002/pc.24214
[10] Khosrokhavar, R., Naderi, G., Bakhshandeh, G., Hamid, M., & Ghoreishy, R. (2011). Effect of Processing Parameters on PP/EPDM/Organoclay Nanocomposites Using Taguchi Analysis Method. Iranian Polymer Journal, 20(1), 41-53. https://www.sid .ir/en/Journal/ViewPaper.aspx?ID=188990
[11] Naderi, G., Lafleur, P. G., & Dubois, C. (2007). Microstructure-properties correlations in dynamically vulcanized nanocomposite thermoplastic elastomers based on PP/EPDM. Polymer Engineering & Science, 47(3), 207-217. https://doi.org/10.1002/pen.20673
[12] Bates, P. J., Dyck, C., & Osti, M. (2004). Vibration welding of nylon 6 to nylon 66. Polymer Engineering & Science, 44(4), 760-771. https://doi.org/10.1002/pen.20068
[13] Mokhtarzadeh, A., Benatar, A., & Wu, C-Y. (2004, May 16-20). Experiments in hot plate welding of polypropylene nanocomposites. Antec 2004 Plastics: Annual Technical Conference, Navy Pier, Chicago, Illinois.  https://tdl.libra.titech.ac.jp/journaldocs/ en/recordID/article.bib-01/ZR000000269636?hit=-1&caller=xc-search
[14] Chen, M., Zak, G., & Bates, P. J. (2011). Effect of carbon black on light transmission in laser welding of thermoplastics. Journal of Materials Processing Technology, 211(1), 43-47. https://doi.org/10.1016/j.jmatprotec.2010.08.017
[15] Liu, H. X., Yan, Z., Li, P., & Wang, X. (2014). Prediction of molten area in laser transmission welding of thermoplastic polymers. Science and Technology of Welding and Joining, 19(6), 487-492. https://doi.org/10.1179/1362171814Y.0000000214
[16] Nakhaei, M. R., Mostafa Arab, N. B., Naderi, G., & Hoseinpour Gollo, M. (2013). Experimental study on optimization of CO2 laser welding parameters for polypropylene-clay nanocomposite welds. Journal of Mechanical Science and Technology, 27(3), 843-848. https://doi.org/10.1007/s12206-013-0109-8
[17] Acherjee, B., Kuar, A. S., Mitra, S., & Misra, D. (2012). Modeling and analysis of simultaneous laser transmission welding of polycarbonates using an FEM and RSM combined approach. Optics & Laser Technology, 44(4), 995-1006. https://doi.org/10.1016/j.o ptlastec.2011.10.018
[18] Nakhaei, M., Mostafa Arab, N., & Kordestani, F. (2012). Modeling of weld lap-shear strength for laser transmission welding of thermoplastic using artificial neural network. Advanced Materials Research, 445, 454-459. https://doi.org/10.4028/www.scientif ic.net/AMR.445.454
[19] Kumar, N., & Bandyopadhyay, A. (2017). Simulation of the Effects of Input Parameters on Weld Quality in Laser Transmission Welding (LTW) Using a Combined Response Surface Methodology (RSM)-Finite Element Method (FEM) Approach. Lasers in Engineering (Old City Publishing), 36(4), 225-243. https://web.s.ebscohost.com/abstract?direct=true&pr ofile=ehost&scope=site&authtype=crawler&jrnl=08981507&asa=Y&AN=121232956&h=fo03G2cEpLgw4LgnBSpeAQ2YyyvtdXJOwVkrPZd1uPQi8oNO3nE0RZrOlnSSEG5LIIUzF1RIzR4BeeYa2qMh8w%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d08981507%26asa%3dY%26AN%3d121232956
[20] Nakhaei, M. R., & Ghorbankhan, A. (2021). Experimental Investigation on Mechanical Properties of PA6/NBR/Graphene Nanocomposite by Response Surface Methodology. Karafan Quarterly Scientific Journal, 18(3), 327-341. https://doi.org/10.48301/kssa.2021 .275252.1405