بهینه‌سازی سیستم خنک‌کاری یک موتور احتراق داخلی بنزینی به‌منظور کاهش مصرف سوخت و آلاینده‌های خروجی از اگزوز

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسنده

عضو هیئت علمی، گروه مهندسی مکانیک، دانشگاه فنی و حرفه‌ای، تهران، ایران.

چکیده

با توجه به راندمان پایین موتورهای احتراق داخلی، قسمت بسیار زیادی از انرژی شیمیایی سوخت مصرفی آن‌ها به‌صورت گرما از طریق سیستم خنک‌کاری به محیط دفع می‌شود. متأسفانه در بیشتر موتورها، هنوز از سیستم خنک‌کاری کلاسیک استفاده می‌شود که این نوع سیستم عملاً قادر به خنک‌کاری بهینه موتور در شرایط مختلف کاری آن نیست و این مقوله باعث افزایش مصرف سوخت و زیادشدن آلایندگی‌های خروجی از موتورها می‌شود. از این‌رو در این مقاله ابتدا یک سیستم خنک‌کاری کلاسیک مورد آزمون قرار گرفت و عملکرد آن ثبت شد، سپس در سیستم خنک‌کاری همان موتور، پمپ آب مکانیکی با یک پمپ آب برقی و ترموستات مکانیکی با یک ترموستات الکترونیکی جایگزین شد و پس از این ارتقا، موتور در همان شرایط حالت کلاسیک آزمون شد و نتایج آن با نتایج به‌دست‌آمده از سیستم کلاسیک مقایسه گردید. نتایج حاصل نشان می‌دهد که اگر از یک برنامه خوب و کامل برای کنترل پمپ آب برقی و ترموستات الکترونیکی استفاده شود در مقایسه با سیستم کلاسیک علاوه‌بر بالا رفتن عمر قطعات موتور، میزان مصرف سوخت حداقل 1.19 درصد و حداکثر 4.33 درصد کاهش می‌یابد، همچنین مدت‌زمان گرم شدن موتور حداقل 6.25 درصد و حداکثر 18.84 درصد کم می‌شود. علاوه بر این‌ها آلایندگی‌های HC و NO در بیشتر آزمون‌ها به‌ترتیب حداقل 15.32 درصد، حداکثر 70 درصد و حداقل 9.28 درصد، حداکثر 46.58 درصد کاهش را نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of the Cooling System of a Gasoline Internal Combustion Engine to Reduce Fuel Consumption and Exhaust Emissions

نویسنده [English]

  • Hadi Ghasemi Zavaragh
Faculty Member, Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran.
چکیده [English]

Due to the low efficiency of internal combustion engines, a large part of the chemical energy of the fuel they consume is dissipated to the environment as heat through a cooling system. Unfortunately, most engines still use the classic cooling system, which is practically unable to cool the engine optimally unnder different operating conditions, and this category increases fuel consumption and increases emissions from engines. Therefore, in this paper, first, a classic cooling system was tested and its performance recorded. Then, in the cooling system of the same engine, a mechanical water pump and mechanical thermostat were respectively replaced with electric water pump and an electronic thermostat. After this upgrade, the engine was tested under the same conditions as the classic mode, and its results were compared with the results obtained from the classic system. The results illustrated that if a good and complete program is used to control the electric water pump and electronic thermostat, fuel consumption was reduced by at least 1.19% and at most 4.33% compared to the classic system in addition to increasing the lifespan of engine parts. In addition, the engine warm-up time was reduced by a minimum of 6.25% and a maximum of 18.84%. Moreover, HC and NO pollution in most tests showed a minimum of 15.32% and a maximum of 70% and a minimum of 9.28% and a maximum of 46.58%, respectively.

کلیدواژه‌ها [English]

  • Internal combustion engines
  • Cooling system
  • Water pump
  • Thermostat
  • Fuel
[1] Ap, N. S., & Golm, N. C. (1997, May 19). New Concept of Engine Cooling System (Newcool). 1995 Vehicle Thermal Management Systems Conference and Exhibition, United States. https://doi.org/10.4271/971775
[2] Wang, T. T., & Wagner, J. R. (2015). A smart engine cooling system-experimental study of integrated actuator transient behavior. Society of Automotive Engineers Technical Paper. https://doi.org/10.4271/2015-01-1604
[3] Phapale, S., Kommareddy, P., Sindgikar, P., & Jadhav, N. (2015). Optimization of commercial vehicle cooling package for improvement of vehicle fuel economy. Society of Automotive Engineers Technical Paper. https://doi.org/10.4271/2015-01-1349
[4] Mohamed, E. S. (2016). Development and analysis of a variable position thermostat for smart cooling system of a light duty diesel vehicles and engine emissions assessment during NEDC. Applied Thermal Engineering, 99, 358-372. https://doi.org/10.1016/j .applthermaleng.2015.12.099
[5] Castiglione, T., Pizzonia, F., & Bova, S. (2016). A novel cooling system control strategy for internal combustion engines. Society of Automotive Engineers International Journal of Materials and Manufacturing, 9(2), 294-302. https://doi.org/10.4271/2016-01-0226
[6] Millo, F., Caputo, S., Cubito, C., Calamiello, A., Mercuri, D., & Rimondi, M. (2016). Numerical simulation of the warm-up of a passenger car diesel engine equipped with an advanced cooling system. Society of Automotive Engineers Technical Paper. https://doi.org/10.4271 /2016-01-0555
[7] Tao, X., & Wagner, J. R. (2016). An engine thermal management system design for military ground vehicle-simultaneous fan, pump and valve control. Society of Automotive Engineers International Journal of Passenger Cars-Electronic and Electrical Systems, 9(1), 243-254. https://doi.org/10.4271/2016-01-0310
[8] Tang, P., Zhang, Y., Xu, Z., & Tao, Q. (2016). Fuel Economy Optimization with Integrated Modeling for Vehicle Thermal Management System. Society of Automotive Engineers Technical Paper. https://doi.org/10.4271/2016-01-0225
[9] Liu, G., Zhao, Z., Guan, H., Liu, Y., Zhang, C., Gao, D., Zhou, W., & Knauf, J. (2016). Influence of advanced technology for thermal management on SUV. Society of Automotive Engineers International Journal of Passenger Cars-Mechanical Systems, 9(1), 36-44. https://doi.org/10.4271/2016-01-0238
[10] Shutty, J., & Pinto, R. (2013). Advanced Thermal Management Strategies. Society of Automotive Engineers Technical Papers. https://doi.org/10.4271/2013-36-0542
[11] Kang, H., Ahn, H., & Min, K. (2015). Smart cooling system of the double loop coolant structure with engine thermal management modeling. Applied Thermal Engineering, 79, 124-131. https://doi.org/10.1016/j.applthermaleng.2014.12.042
[12] Ghasemi Zavaragh, H., Kaleli, A., Afshari, F., & Amini, A. (2017). Optimization of heat transfer and efficiency of engine via air bubble injection inside engine cooling system. Applied Thermal Engineering, 123, 390-402. https://doi.org/10.1016/j.applt hermaleng.2017.04.164
[13] Rahmatinejad, B., Abbasgholipour, M., & Mohammadi Alasti, B. (2021). Redesign of engine radiator based on number of optimal fans using a genetic algorithm. Karafan Quarterly Scientific Journal, 17(4), 97-115. https://doi.org/10.48301/kssa.2021.128 398
[14] Haghighat, A. K., Roumi, S., Madani, N., Bahmanpour, D., & Olsen, M. G. (2018). An intelligent cooling system and control model for improved engine thermal management. Applied Thermal Engineering, 128, 253-263. https://doi.org/10.1016/j.applthermaleng.2017.08. 102
[15] Feng, L., Wikander, J., & Li, Z. (2020). Fuel Minimization of the Electric Engine Cooling System With Active Grille Shutter by Iterative Quadratic Programming. IEEE Transactions on Vehicular Technology, 69(3), 2621-2635. https://doi.org/10.1109/TVT.2019.2962866
[16] Ghasemi Zavaragh, H., Kaleli, A., Solmuş, I., & Afshari, F. (2021). Experimental Analysis and Evaluation of Thermostat Effects on Engine Cooling System. Journal of Thermal Science, 30(2), 540-550. https://doi.org/10.1007/s11630-020-1264-8
[17] Kaleli, A. (2020). Development of the predictive based control of an autonomous engine cooling system for variable engine operating conditions in SI engines: design, modeling and real-time application. Control Engineering Practice, 100(1), 104424. https://doi.org /10.1016/j.conengprac.2020.104424