بررسی تجربی عیوب جوش در اتصال کنارهم آلیاژ آلومینیوم با روش جوشکاری اصطکاکی اغتشاشی: بررسی هندسه پین ابزار و پارامترهای فرایندی

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 استادیار، گروه مهندسی مکانیک، دانشگاه فنی و حرفه‌ای، تهران، ایران.

2 استادیار، گروه مهندسی مکانیک، دانشکده فنی، دانشگاه بین‌المللی امام خمینی، قزوین، ایران.

چکیده

در این مقاله به بررسی خواص ریزساختاری، مکانیکی و همچنین عیوب موجود در اتصال ورقه‌های آلومینیومی به کمک روش جوشکاری اصطکاکی اغتشاشی پرداخته شده است. ابتدا خواص ریزساختاری ناحیه جوشکاری اصطکاکی بررسی شد و سپس تأثیر پارامترهای فرایند بر خواص ریزساختاری مورد بحث قرار گرفت. نتایج نشان داد اندازه دانه در ناحیه اغتشاشی نسبت به فلز پایه، بسیار بهبود یافته است. سپس تأثیر پارامترهای ورودی فرایند بر اندازه ذرات بررسی شد. عیوب جوش که یکی از مهم‌ترین دلایل شکست اتصالات می‌باشد بررسی شد و تأثیر هندسه پین ابزار و پارامترهای فرایند بر ایجاد عیوب در ناحیه جوشکاری مورد بحث قرار گرفت. نتایج نشان داد ابزار رزوه‌دار در سرعت پیش‌روی بالاتری قابلیت تولید جوش بی‌عیب را دارد و به ترتیب ابزار‌های مربعی، مثلثی مخروطی و مثلثی در مراتب بعدی قرار می‌گیرند؛ به‌طوری‌که در سرعت دورانی 500 دور در دقیقه می‌توان با ابزار رزوه‌دار حتی در سرعت پیشروی 500 میلی‌متر در دقیقه نیز اتصال بی‌عیب تولید کرد درحالی‌که این مقدار برای ابزار مربعی و مثلثی به‌ترتیب 400 و 315 میلی‌متر در دقیقه است. در انتها سختی ناحیه جوشکاری‌شده در نمونه‌های مختلف بررسی شد. سختی فلز جوش به دلیل آنیل شدن و حذف کار سختی انجام‌شده روی ماده پایه (ناشی از فرایند نورد اولیه) پایین‌تر از ماده پایه است و با افزایش نسبت سرعت دورانی به سرعت پیش‌روی ابزار، سختی کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Investigation of Welding Defects in Butt Joining of Aluminum Alloy by Friction Stir Welding: Effects of Tool Pin Profile and Process Parameters

نویسندگان [English]

  • Mostafa Akbari 1
  • Parviz Asadi 2
1 Assistant Professor, Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran.
2 Assistant Professor, Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran.
چکیده [English]

In this paper, the microstructural and mechanical properties as well as the defects in the joining of aluminum sheets using the friction welding method are investigated. First, the microstructural properties of the friction stir welding zone are investigated, and then the effect of process parameters on the microstructural properties is discussed. The grain size in the stir zone was greatly improved compared to the base metal, which resulted in the improvement of the mechanical properties in this zone. Then, the effect of process parameters on the grain size was investigated. Welding defects, which is one of the most important reasons for joint failure, were investigated and the effect of tool pin profile and process parameters on the formation of defects in the welding area were discussed. For instance, by using the rotational speed of 500 rpm, a defect-free joint can be produced by the threaded pin even in the traverse speed of 500 mm/min, while the amount for the square and triangular pin profiles were 400 and 315 mm/min, respectively. Finally, the hardness of the welded area was studied in different samples. The hardness of the weld metal was lower than that of the base material due to the annealing of hardness which was generated as a result of primary rolling process. The hardness decreased by increasing the ratio of rotational speed to tool traverse speed.

کلیدواژه‌ها [English]

  • Friction stir welding
  • Welding defects
  • 5083 aluminum
  • Microstructure
  • Mechanical properties
[1] Huang, B., Wang, L., Hui, L., Cong, J., & Zhou, S. (2022). Analysis of Multi-zone Fatigue Crack Growth Behavior of Friction Stir Welded 5083 Aluminum Alloy. Journal of Materials Engineering and Performance, 31(1), 53-63. https://doi.org/10.1007/s11 665-021-06191-4
[2] Rudra, A., Ashiq, M., Tiwari, J. K., Das, S., & Dasgupta, R. (2020). Study of Processing Map and Effect of Hot Rolling on Mechanical Properties of Aluminum 5083 Alloy. Transactions of the Indian Institute of Metals, 73(7), 1809-1826. https://doi.org/10.1 007/s12666-020-02003-w
[3] Sinhmar, S., & Dwivedi, D. K. (2020). Mechanical behavior of FSW joint welded by a novel designed stationary shoulder tool. Journal of Materials Processing Technology, 277, 116482. https://doi.org/10.1016/j.jmatprotec.2019.116482
[4] Akbari, M., Shojaeefard, M. H., Asadi, P., & Khalkhali, A. (2017). Wear Performance of A356 Matrix Composites Reinforced with Different Types of Reinforcing Particles. Journal of Materials Engineering and Performance, 26(9), 4297-4310. https://doi.o rg/10.1007/s11665-017-2901-6
[5] Moreto, J. A., Dos Santos, M. S., Ferreira, M. O. A., Carvalho, G. S., Gelamo, R. V., Aoki, I. V., Taryba, M., Bose Filho, W. W., & Fernandes, J. C. S. (2021). Corrosion and corrosion-fatigue synergism on the base metal and nugget zone of the 2524-T3 Al alloy joined by FSW process. Corrosion Science, 182, 109253. https://doi.org/10 .1016/j.corsci.2021.109253
[6] Abbasi, M., Bagheri, B., Abdollahzadeh, A., & Moghaddam, A. O. (2021). A different attempt to improve the formability of aluminum tailor welded blanks (TWB) produced by the FSW. International Journal of Material Forming, 14(5), 1189-1208. https://doi.org/10.1 007/s12289-021-01632-w
[7] Akbari, M., Khalkhali, A., Keshavarz, S. M. E., & Sarikhani, E. (2018). The effect of in-process cooling conditions on temperature, force, wear resistance, microstructural, and mechanical properties of friction stir processed A356. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232(5), 429-437. https://doi.org/10.1177/1464420716630569
[8] Jacquin, D., & Guillemot, G. (2021). A review of microstructural changes occurring during FSW in aluminium alloys and their modelling. Journal of Materials Processing Technology, 288(5-8), 116706. https://doi.org/10.1016/j.jmatprotec.2020.116706
[9] Taban, E., & Kaluc, E. (2006). Microstructural and mechanical properties of double-sided MIG, TIG and friction stir welded 5083-H321 aluminium alloy. Kovove Materialy, 44(1), 25-33. http://www.kovmat.sav.sk/full.php?rr=44&cc=1&ss=25
[10] Fujii, H., Cui, L., Maeda, M., & Nogi, K. (2006). Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys. Materials Science and Engineering: A, 419(1), 25-31. https://doi.org/10.1016/j.msea.2005.11. 045
[11] Peel, M., Steuwer, A., Preuss, M., & Withers, P. J. (2003). Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta Mater, 51(16), 4791-4801. https://doi.org/10.1016/ S1359-6454(03)00319-7
[12] Czechowski, M. (2005). Low-cycle fatigue of friction stir welded Al–Mg alloys. Journal of Materials Processing Technology, 164-165(1), 1001-1006. https://doi.org/10.101 6/j.jmatprotec.2005.02.078
[13] Hirata, T., Oguri, T., Hagino, H., Tanaka, T., Chung, S. W., Takigawa, Y., & Higashi, K. (2007). Influence of friction stir welding parameters on grain size and formability in 5083 aluminum alloy. Materials Science and Engineering: A, 456(1), 344-349. https://doi.org/10.1016/j.mse a.2006.12.079
[14] Akbari, M., & Asadi, P. (2020). Dissimilar friction stir lap welding of aluminum to brass: Modeling of material mixing using coupled Eulerian–Lagrangian method with experimental verifications. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 234(8), 1117-1128. https://d oi.org/10.1177/1464420720922560
[15] Akbari, M., Asadi, P., & Behnagh, R. A. (2021). Modeling of material flow in dissimilar friction stir lap welding of aluminum and brass using coupled Eulerian and Lagrangian method. The International Journal of Advanced Manufacturing Technology, 113(3), 721-734. https ://doi.org/10.1007/s00170-020-06541-x
[16] Bala Chennaiah, M., Kumar, K., & Sridhar, V. (2021). Influence of tool profiles on similar Al-5083 alloys using friction stir welding. Materials Today: Proceedings, 46, 8032-8037. http s://doi.org/10.1016/j.matpr.2021.02.787
[17] Saravana Kumar, R., Rajasekaran, T., Singh, S. D., Kumar, S., Mishra, P., Shrivastav, P., & Ravishankar, S. (2020, February 24-29). Optimization of FSW Parameters to Improve the Mechanical and Metallurgical Properties of Aluminium Alloy AA 5083 Joints. 3rd International Conference on Advances in Mechanical Engineerin, SRMIST Kattankulathur, India. http://dx.doi.org/10.1088/1757-899X/912/3/032029
[18] Chander, M. S., Ramakrishna, M., & Durgaprasad, B. (2021). Experimental investigation on temperature distribution during solid state joining of 5083 aluminium alloy. Materials Today: Proceedings, 39(2), 240-244. https://doi.org/10.1016/j.matpr.2020.07.037
[19] Dialami, N., Cervera, M., Chiumenti, M., & Segatori, A. (2019). Prediction of joint line remnant defect in friction stir welding. International Journal of Mechanical Sciences, 151, 61-69. https://doi.org/10.1016/j.ijmecsci.2018.11.012
[20] Nandan, R., Roy, G. G., & Debroy, T. (2006). Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding. Metallurgical and Materials Transactions A, 37(4), 1247-1259. https://doi.org/10.1007/s11661-006-1076-9
[21] Threadgill, P. L. (2007). Terminology in friction stir welding. Science and Technology of Welding and Joining, 12(4), 357-360. https://doi.org/10.1179/174329307X19762 9
[22] Asadi Boroojeni, B., & Mozafari Vanani, L. (2020). The effect of tool geometry on the tensile strength of polypropylene Components Welded by Friction Stir Welding Method. Karafan Quarterly Scientific Journal, 17(1), 133-145. https://doi.org/10.48301/kssa .2020.112761
[23] Ghasemi Tamami, P., Javadimanesh, A., & Mardani, S. (2021). Investigation and optimization of friction stir welding process of aluminum 5010 to 6061. Karafan Quarterly Scientific Journal, 17(4), 281-311. https://doi.org/10.48301/kssa.2021.128408