بهینه‌سازی موقعیت یک ربات لامسه‌ای افزونه برای افزایش ضریب میرایی مجازی قابل شبیه‌سازی با الگوریتم‌های فرا ابتکاری بر مبنای هوش جمعی

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 استادیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی سیرجان، سیرجان، ایران.

2 استادیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی شیراز، شیراز، ایران.

3 کارشناسی ارشد، گروه ساخت و تولید، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران.

10.48301/kssa.2023.404933.2618

چکیده

در این مقاله از یک ربات لامسه­ای سه درجه آزادی برای شبیه­­سازی جسمی مجازی واقع بر نقطه­ای بر روی یک دیوار دو بعدی استفاده شده است. دو مؤلفۀ مکانی نقطه کاری روی دیوار دلخواه بوده و لذا این ربات دو درجه آزادی افزونه برای این کار خواهد داشت که توسط روش­های بهینه­سازی کلونی زنبور عسل مصنوعی و الگوریتم بهینه­سازی کلاغ به گونه­ای مشخص شده­اند تا ضمن تضمین پایداری ربات، ضریب میرایی جسم مجازی قابل شبیه­سازی نیز بیشینه شود. فرایند بهینه­سازی توسط هر روش در دو حالت مختلف انجام شده است. در حالت اول سفتی ربات در کل فضای کاری مقداری ثابت فرض شده و در حالت بعدی سفتی تابعی از پیکره­بندی ربات در نظر گرفته شده است. در هر حالت، ابتدا مقادیر جرم، ضریب میرایی مؤثر و سفتی مؤثر ربات به‌دست آمده و سپس از روابط تئوری مرز عملکرد پایدار ربات به‌دست می­آید. در نهایت روش­های بهینه‌سازی مذکور، محل نقطه کاری را به گونه­ای مشخص می­کنند که ضریب میرایی قابل شبیه­سازی بیشینه شود. نتایج نشان می­دهند که در حالت ثابت بودن سفتی ربات، هر دو روش مذکور توانایی شبیه‌سازی مقدار بیشینه 825/1 را برای ضریب میرایی مجازی داشتند. حال آن‌که در حالت متغیر بودن سفتی ربات، الگوریتم کلاغ و زنبور عسل به ترتیب به مقادیر 2502 و 2498 به عنوان بیشینۀ ضریب میرایی قابل شبیه­سازی رسیدند. همچنین با وجود آن‌که تعداد محاسبه تابع هزینه در هر دو روش یکسان است، اما الگوریتم بهینه­سازی کلاغ سریع­تر و تکرار پذیرتر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Position Optimization of a Redundant Haptic Device for Increasing the Simulating Virtual Damping Using Metaheuristic Methods based on Swarm Intelligence

نویسندگان [English]

  • Ahmad Mashayekhi 1
  • Abbas Karami 2
  • A;i Zeinolabedin Beygi 3
1 Assistant Professor, Department of Mechanical Engineering, Sirjan University of Technology, Sirjan, Iran
2 Assistant Professor, Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran
3 MSc graduate, Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran.
چکیده [English]

In the present research, a three-degree-of-freedom haptic device was used to simulate a virtual object located on a point on a two-dimensional wall. Two spatial coordinates of the operating point on the wall were arbitrary. Therefore, the robot would have two degrees of freedom redundancy for this task. These two degrees of robot redundancy were specified by the artificial bee colony optimization and crow optimization algorithm in such a way that while ensuring the stability of the robot, the damping coefficient of the simulated virtual object was also maximized. The optimization process was performed in two different ways. In the first case, the stiffness of the robot was assumed to be a constant value in the whole workspace, while in the second case, the stiffness was considered a function of the robot configuration. In each case and at each operating point, first an effective mass, an effective damping coefficient, and an effective stiffness for the robot were obtained, and then using some theoretical relations, a stable operation boundary was obtained. Finally, the optimization methods specify the location of the operating point in such a way that the simulated damping coefficient was maximized. The results show that in the case of constant robot stiffness, both of the mentioned methods were able to simulate the maximum value of 1.825 for the virtual damping coefficient. However, in the case of variable robot stiffness, the crow and bee algorithms reached the values of 2502 and 2498, respectively as the maximum damping coefficient that could be simulated. In addition, although the number of cost function calculations is the same in both methods, the crow optimization algorithm was faster and more repeatable.

کلیدواژه‌ها [English]

  • Haptic Device
  • Stability
  • Optimization
  • Artificial Bee Colony Optimization
  • Crew Optimization Algorithm
  • Redundancy
[1] Mashayekhi, A., Nahvi, A., Yazdani, M., Mohammadi Moghadam, M., Arbabtafti, M., & Norouzi, M. (2014). VirSense: a novel haptic device with fixed-base motors and a gravity compensation system. Industrial Robot: An International Journal, 41(1), 37-49. http s://doi.org/10.1108/IR-02-2013-328
[2] Hadi, A., & Bagherian Jafarabadi, M. A. (2017). Design and Prototyping of a Haptic User Interface based on Head Movements for Patients with Cervical Spinal Cord Injury. Modares Mechanical Engineering, 17(5), 52-62. http://mme.modares.ac.ir/article-1 5-1502-en.html
[3] Tahmasbi, V., Zeinolabedin Beygi, A., Elahi, S. H., & Azizi Ashtiani, M. R. (2022). Statistical modeling, optimization and sensitivity analysis of dried turning of aluminum bronze alloy. Sādhanā, 47(4), 232. https://doi.org/10.1007/s12046-022-01955-7
[4] Aliakbari, K., Saberi, M. R., & Andalib, M. (2021). Applying Taguchi method to optimize EDM parameters on Inconel 718 super alloy. Karafan Quarterly Scientific Journal, 17(4), 167-186. https://doi.org/10.48301/kssa.2021.128402
[5] Khosravian Cham Piri, E. (2022). Design Optimal Adaptive Trajectory Tracking Control for Station Keeping and Attitude Control of Quadrotor Using Gray Wolf Optimization. Karafan Quarterly Scientific Journal, 19(3), 663-695. https://doi.org/10.48301/kssa .2023.370241.2348
[6] Hussien, A. G., Amin, M., Wang, M., Liang, G., Alsanad, A., Gumaei, A., & Chen, H. (2020). Crow Search Algorithm: Theory, Recent Advances, and Applications. Institute of Electrical and Electronics Engineers Access, 8, 173548-173565. https://doi.org/10. 1109/ACCESS.2020.3024108
[7] Han, Z., Chen, M., Shao, S., & Wu, Q. (2022). Improved artificial bee colony algorithm-based path planning of unmanned autonomous helicopter using multi-strategy evolutionary learning. Aerospace Science and Technology, 122(6), 107374. https://doi.org/10.10 16/j.ast.2022.107374
[8] Rabiee, A. H., Sherkatghanad, E., Zeinolabedin Beygi, A., Moslemi Naeini, H., & Lang, L. (2023). Experimental investigation and modeling of fiber metal laminates hydroforming process by GWO optimized neuro-fuzzy network. Journal of Computational & Applied Research in Mechanical Engineering, 12(2), 193-209. https://doi.org/10.22061/jcar me.2022.8268.2101
[9] Talebi Ghadikolaee, H., Moslemi Naeini, H., Rabiee, A. H., Zeinolabedin Beygi, A., & Alexandrov, S. (2023). Experimental-numerical analysis of ductile damage modeling of aluminum alloy using a hybrid approach: ductile fracture criteria and adaptive neural-fuzzy system (ANFIS). International Journal of Modelling and Simulation, 43(5), 736-751. https://doi.org/10.1080/02286203.2022.2121675
[10] Liu, H. (2022). Research on cloud computing adaptive task scheduling based on ant colony algorithm. Optik, 258, 168677. https://doi.org/10.1016/j.ijleo.2022.168677
[11] Sherkatghanad, E., Moslemi Naeini, H., Rabiee, A. H., Zeinolabedin Beygi, A., Zal, V., & Lang, L. (2021). Modeling and Predicting the Important Properties of the PVC/Glass Fiber Composite Laminates in the Production Process by the TLBO-ANFIS Approach. Iranian Journal of Materials Forming, 8(4), 63-75. https://doi.org/10.22099/ijmf.20 21.41242.1190
[12] Peng, J., Li, Y., Kang, H., Shen, Y., Sun, X., & Chen, Q. (2022). Impact of population topology on particle swarm optimization and its variants: An information propagation perspective. Swarm and Evolutionary Computation, 69, 100990. https://doi.org/10.1 016/j.swevo.2021.100990
[13] Liu, Y., Feng, X., Yang, Y., Ruan, Z., Zhang, L., & Li, K. (2022). Solving urban electric transit network problem by integrating Pareto artificial fish swarm algorithm and genetic algorithm. Journal of Intelligent Transportation Systems, 26(3), 253-268. https://doi .org/10.1080/15472450.2020.1848561
[14] Yang, B., Huang, X., Cheng, W., Huang, T., & Li, X. (2022). Discrete bacterial foraging optimization for community detection in networks. Future Generation Computer Systems, 128(3), 192-204. https://doi.org/10.1016/j.future.2021.10.015
[15] ForceDimension. (2022). Force Dimension - Haptic Devices. https://www.forcedimensi on.com/products/omega
[16] Mashayekhi, A., Karami, A., & Siciliano, B. (2023). A New Approach for Simplifying Multi-Degree of Freedom Haptic Device Dynamics Model. Journal of Intelligent & Robotic Systems, 108(1), 4. https://doi.org/10.1007/s10846-023-01857-8
[17] Mashaikhi, A., Shakri, M., Behbahani, S., Nahovi, A., & Kashmiri, M. (2022, February 17). How to simplify the dynamics of several degrees of freedom of tactile robot and its effect on stability. 6th national Conference on Mechanical and Aerospace Engineering, Tehran, Iran. https://civilica.com/doc/1299211/
[18] Abbott, J. J., & Okamura, A. M. (2005). Effects of position quantization and sampling rate on virtual-wall passivity. Institute of Electrical and Electronics Engineers Transactions on Robotics, 21(5), 952-964. https://doi.org/10.1109/TRO.2005.851377
[19] Diolaiti, N., Niemeyer, G., Barbagli, F., & Salisbury, J. K. (2006). Stability of Haptic Rendering: Discretization, Quantization, Time Delay, and Coulomb Effects. Institute of Electrical and Electronics Engineers Transactions on Robotics, 22(2), 256-268. https://doi.org /10.1109/TRO.2005.862487
[20] Mashayekhi, A., Boozarjomehry, R. B., Nahvi, A., Meghdari, A., & Asgari, P. (2014). Improved passivity criterion in haptic rendering: influence of Coulomb and viscous friction. Advanced Robotics, 28(10), 695-706. https://doi.org/10.1080/01691864.20 14.894940
[21] Gil, J. J., Sanchez, E., Hulin, T., Preusche, C., & Hirzinger, G. (2009). Stability boundary for haptic rendering: Influence of damping and delay. Journal of Computing and Information Science in Engineering, 9(1), 011005. https://doi.org/10.1115/1.3074283
[22] Hulin, T., Albu-Schäffer, A., & Hirzinger, G. (2014). Passivity and Stability Boundaries for Haptic Systems With Time Delay. Institute of Electrical and Electronics Engineers Transactions on Control Systems Technology, 22(4), 1297-1309. https://doi.org/10. 1109/TCST.2013.2283372
[23] Mashayekhi, A., Behbahani, S., Ficuciello, F., & Siciliano, B. (2020). Influence of human operator on stability of haptic rendering: a closed-form equation. International Journal of Intelligent Robotics and Applications, 4(4), 403-415. https://doi.org/10.1007/s41 315-020-00131-6
[24] Mashayekhi, A., Behbahani, S., Ficuciello, F., & Siciliano, B. (2018). A novel Lyapunov function for stability of haptic device in simulating virtual objects. Modares Mechanical Engineering, 17(10), 367-374. http://mme.modares.ac.ir/article-15-3853-en.html
[25] Mashayekhi, A., Behbahani, S., Ficuciello, F., & Siciliano, B. (2018). Analytical Stability Criterion in Haptic Rendering: The Role of Damping. Institute of Electrical and Electronics Engineers/American Society of Mechanical EngineersTransactions on Mechatronics, 23(2), 596-603. https://doi.org/10.1109/TMECH.2018.2797688
[26] Mashayekhi, A., Behbahani, S., Ficuciello, F., & Siciliano, B. (2020). Delay-Dependent Stability Analysis in Haptic Rendering. Journal of Intelligent & Robotic Systems, 97(1), 33-45. https://doi.org/10.1007/s10846-019-01017-x
[27] Gil, J. J., Avello, A., Rubio, A., & Florez, J. (2004). Stability analysis of a 1 DOF haptic interface using the Routh-Hurwitz criterion. Institute of Electrical and Electronics Engineers Transactions on Control Systems Technology, 12(4), 583-588. https://doi .org/10.1109/TCST.2004.825134
[28] Diaz, I., & Gil, J. J. (2008, May 19-23). Influence of internal vibration modes on the stability of haptic rendering. 2008 Institute of Electrical and Electronics Engineers International Conference on Robotics and Automation, Pasadena, California, United States. https: //doi.org/10.1109/ROBOT.2008.4543647
[29] Çavuşoğlu, M. C., Feygin, D., & Tendick, F. (2002). A Critical Study of the Mechanical and Electrical Properties of the PHANToM Haptic Interface and Improvements for Highperformance Control. Presence: Teleoperators and Virtual Environments, 11(6), 555-568. https://doi.org/10.1162/105474602321050695
[30] Busson, D., Bearee, R., & Olabi, A. (2017). Task-oriented rigidity optimization for 7 DOF redundant manipulators. International Federation of Automatic Control-PapersOnLine, 50(1), 14588-14593. https://doi.org/10.1016/j.ifacol.2017.08.2108
[31] Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Erciyes University. https://www.researchgate.net/publication/255638348_An_Idea_Based _on_Honey_Bee_Swarm_for_Numerical_Optimization_Technical_Report_-_TR06
[32] Mashayekhi, M., & Yousefi, R. (2021). Topology and size optimization of truss structures using an improved crow search algorithm. Structural Engineering and Mechanics, An Int'l Journal, 77(6), 779-795. https://doi.org/10.12989/sem.2021.77.6.779