ارائه شاخص جدید برای پایش خطاهای مکانیکی هم‌زمان براساس مطالعۀ تحلیلی طیف هارمونیکی جریان موتور

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 دانشجوی دکتری، گروه مهندسی برق، دانشکده مهندسی برق، دانشگاه زنجان، زنجان، ایران.

2 استاد، گروه مهندسی برق، دانشکده مهندسی برق، دانشگاه زنجان، زنجان، ایران.

3 استادیار، گروه مهندسی برق، گروه مهندسی برق و کامپیوتر ،دانشگاه فنی و حرفه ای، تهران، ایران.

10.48301/kssa.2023.392754.2514

چکیده

تحقیقات زیادی در مورد شناسایی خطاهای جداگانه در موتورهای القایی قفس سنجابی انجام شده است. اما تحقیقات بسیار کمی در زمینۀ خطاهای هم‌زمان در این نوع موتورها وجود دارد. خطاهای هم‌زمان می‌تواند به دلیل نقص در ساخت، مونتاژ، ناهم‌محوری ذاتی موتور و عدم هم‌راستایی محورهای موتور و بار ایجاد شود. عدم لحاظ هم‌زمانی این خطاها، باعث اختلال در سیستم پایش وضعیت موتور می‌شود. هدف مقالۀ حاضر، ارائه رویکردی تحلیلی و تجربی جهت تشخیص خطاهای هم‌زمان ناهم‌محوری و روتور میلۀ شکسته است. لذا با تحلیل‌های تئوری مبتنی بر معادلات دینامیکی، روابط تابع سیم‌پیچ و سری فوریه، چگونگی پیدایش شاخص‌های فرکانسی در جریان استاتور توسط خطاهای مکانیکی مطالعه شده و شاخص فرکانسی جدیدی جهت شناسایی عیوب هم‌زمان معرفی می‌شود. این شاخص در شبیه‌سازی‌ها توسط روش‌های‌ تابع سیم‌پیچ اصلاحی (MWFA) و اجزای محدود (FE) در بارهای مختلف مورد پایش قرار گرفته و حضور آن در موتورهای سالم و معیوب با اعمال خطاهای جداگانه و هم‌زمان مطالعه می‌شود. نتایج شبیه‌سازی و آزمایشگاهی، توانایی شاخص پیشنهادی را در تفکیک خطاهای هم‌زمان از سایر موارد اثبات می‌کند. این روش غیرتهاجمی، کم هزینه و مستقل از بار است و قابلیت اجرا در سیستم پایش هر موتور الکتریکی را دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Present a New Index for Diagnosing Simultaneous Mechanical Faults According to an Analytical Study on the Current Harmonics of Motors

نویسندگان [English]

  • Seyed Hamid Rafiei 1
  • Mansour Ojaghi 2
  • Mehdi Sabouri 3
1 PhD Student, Department of Electrical Engineering, Zanjan University (ZNU), Zanjan, Iran.
2 Professor, Department of Electrical Engineering, Zanjan University (ZNU), Zanjan, Iran.
3 Assistant Professor, Department of Electrical & Computer Engineering, Technical and Vocational University (TVU), Tehran, Iran
چکیده [English]

Many investigations have been conducted to detect single incipient faults in squirrel cage induction motors. However, there is much less research on detecting and discriminating simultaneous faults within the induction motor. The simultaneous presence of eccentricity fault with some other faults is unavoidable due to some manufacturing imperfections or the possible misalignment of the motor-load shafts. Neglecting the intrinsic eccentricity and simultaneous faults might cause mistakes in the condition motoring of the motor. This article presents an analytical and experimental approach to detecting the simultaneous mix of eccentricity and broken rotor bar faults. Theoretical analyses represented how the indicators appear in the stator current due to mechanical faults according to dynamic equations, MWFA, and Fourier series. Thus, a new frequency indicator was introduced to identify simultaneous faults. The suggestive index is monitored in the modified winding function (MWFA), and finite element (FE) simulations and its amplitude was studied in motors with healthy conditions and separate and simultaneous faults. Simulation and experimental results confirmed the capability of the proposed index to distinguish simultaneous faults from other cases. This method is non-invasive, low-cost, load-independent, and can be implemented in the monitoring system of any motor.

کلیدواژه‌ها [English]

  • Mechanical Simultaneous Faults
  • Condition Monitoring
  • Current Signature
[1] Gundewar, S. K., & Kane, P. V. (2021). Condition Monitoring and Fault Diagnosis of Induction Motor. Journal of Vibration Engineering & Technologies, 9(4), 643-674. https://doi .org/10.1007/s42417-020-00253-y
[2] Choudhary, A., Goyal, D., & Letha, S. S. (2020). Infrared thermography-based fault diagnosis of induction motor bearings using machine learning. Institute of Electrical and Electronics Engineers Sensors Journal, 21(2), 1727-1734. https://doi.org/10.1109/JSEN.2020.3 015868
[3] Aguayo-Tapia, S., Avalos-Almazan, G., Rangel-Magdaleno, J. d. J., & Ramirez-Cortes, J. M. (2023). Physical Variable Measurement Techniques for Fault Detection in Electric Motors. Energies, 16(12), 4780. https://doi.org/10.3390/en16124780
[4] Martinez-Herrera, A. L., Ferrucho-Alvarez, E. R., Ledesma-Carrillo, L. M., Mata-Chavez, R. I., Lopez-Ramirez, M., & Cabal-Yepez, E. (2022). Multiple fault detection in induction motors through homogeneity and kurtosis computation. Energies, 15(4), 1541. https ://doi.org/10.3390/en15041541
[5] Garcia-Calva, T., Morinigo-Sotelo, D., Fernandez-Cavero, V., & Romero-Troncoso, R. (2022). Early Detection of Faults in Induction Motors—A Review. Energies, 15(21), 7855. https://doi.org/10.3390/en15217855
[6] Klein, C., Pinter, M., Palmieri, M., Nienhaus, M., & Grasso, E. (2022). An exact solution to the modified winding function for eccentric permanent magnet synchronous machines. Mathematics, 10(3), 345. https://doi.org/10.3390/math10030345
[7] Polat, A., Yilmaz, A., & Ergene, L. T. (2018). Investigation of The Effects of Eccentricity on Induction Motor via Multi-Resolution Wavelet Analysis. Electrica, 18(2), 187-197. https://doi.org/10.5152/iujeee.2018.1821
[8] Kandukuri, S. T., Senanyaka, J. S. L., Huynh, V. K., & Robbersmyr, K. G. (2019). A Two-Stage Fault Detection and Classification Scheme for Electrical Pitch Drives in Offshore Wind Farms Using Support Vector Machine. Institute of Electrical and Electronics Engineers Transactions on Industry Applications, 55(5), 5109-5118. https://doi.org/ 10.1109/TIA.2019.2924866
[9] Agah, G. R., Rahideh, A., Khodadadzadeh, H., Khoshnazar, S. M., & Hedayatikia, S. (2022). Broken rotor bar and rotor eccentricity fault detection in induction motors using a combination of discrete wavelet transform and Teager–Kaiser energy operator. Institute of Electrical and Electronics Engineers Transactions on Energy Conversion, 37(3), 2199-2206. https://doi.org/10.1109/TEC.2022.3162394
[10] Ojaghi, M., & Mohammadi, M. (2017). Unified modeling technique for axially uniform and nonuniform eccentricity faults in three-phase squirrel cage induction motors. Institute of Electrical and Electronics Engineers Transactions on Industrial Electronics, 65(7), 5292-5301. http://doi.org/10.1109/TIE.2017.2760280
[11] Zhu, R., Tong, X., Han, Q., He, K., Wang, X., & Wang, X. (2023). Calculation and Analysis of Unbalanced Magnetic Pull of Rotor under Motor Air Gap Eccentricity Fault. Sustainability, 15(11), 8537. https://doi.org/10.3390/su15118537
[12] Ishkova, I., & Vítek, O. (2015, May 20-22). Diagnosis of eccentricity and broken rotor bar related faults of induction motor by means of motor current signature analysis. 2015 16th International Scientific Conference on Electric Power Engineering, Kouty nad Desnou, Czech Republic. https://doi.org/10.1109/EPE.2015.7161130
[13] Fireteanu, V., Constantin, A. I., Zorig, A., & Chouder, A. (2018, October 4-6). Impact of the Stator Short-circuit, Rotor Broken Bar and Eccentricity Faults on Rotor Force for Loaded and No-load Induction Motors Operation. 2018 International Conference on Applied and Theoretical Electricity, Craiova, Romania. https://doi.org/10.1109/I CATE.2018.8551471
[14] Fireteanu, V., Constantin, A. I., & Popa, M. (2018, September 3-6). Influence of Single or Multiple Faults Short-circuit, Broken Rotor Bar and Eccentricity on the Torque and Rotor Force in Induction Motors. 2018 XIII International Conference on Electrical Machines, Alexandroupoli, Greece. https://doi.org/10.1109/ICELMACH.2018.850 7008
[15] Antonino-Daviu, J., Quijano-López, A., Climente-Alarcon, V., & Razik, H. (2017, October 1-5). Evaluation of the detectability of rotor faults and eccentricities in induction motors via transient analysis of the stray flux. 2017 Institute of Electrical and Electronics Engineers Energy Conversion Congress and Exposition, Cincinnati, Ohio, United States. https://doi.org/10.1109/ECCE.2017.8096633
[16] Kaikaa, M. Y., Hadjami, M., & Khezzar, A. (2013). Effects of the simultaneous presence of static eccentricity and broken rotor bars on the stator current of induction machine. Institute of Electrical and Electronics Engineers Transactions on Industrial Electronics, 61(5), 2452-2463. https://doi.org/10.1109/TIE.2013.2270216
[17] Kaikaa, M. Y., & Boudjlida, L. (2018). Detection of combined faults in squirrel cage induction motors. European Mechanical Science, 2(1), 9-16. https://doi.org/10.26701/ems.32 3739
[18] Georgoulas, G., Climente-Alarcon, V., Antonino-Daviu, J. A., Tsoumas, I. P., Stylios, C. D., Arkkio, A., & Nikolakopoulos, G. (2017). The Use of a Multilabel Classification Framework for the Detection of Broken Bars and Mixed Eccentricity Faults Based on the Start-Up Transient. Institute of Electrical and Electronics Engineers Transactions on Industrial Informatics, 13(2), 625-634. https://doi.org/10.1109/TII.2016.2637169
[19] Lee, J-H., Pack, J-H., & Lee, I-S. (2019). Fault diagnosis of induction motor using convolutional neural network. Applied Sciences, 9(15), 2950. https://doi.org/10.3390/app9152950
[20] Huang, Z., Wang, T., Liu, W., Valencia-Cabrera, L., Pérez-Jiménez, M. J., & Li, P. (2021). A fault analysis method for three-phase induction motors based on spiking neural P systems. Complexity, 2021, 1-19. https://doi.org/10.1155/2021/2087027
[21] Petrov, A., Plokhov, I., Rassõlkin, A., Vaimann, T., Kallaste, A., & Belahcen, A. (2017, August 29- September 01). Adjusted electrical equivalent circuit model of induction motor with broken rotor bars and eccentricity faults. 2017 Institute of Electrical and Electronics Engineers 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, Tinos, Greece. https://doi.org/10.1109/DE MPED.2017.8062334
[22] Abad, H. B. B., Ojaghi, M., & Taheri, A. (2021). Efficient index for detecting the stator winding interturn fault in six-phase squirrel-cage induction motors. Measurement, 184, 109912. https://doi.org/10.1016/j.measurement.2021.109912
[23] Ojaghi, M., Sabouri, M., & Faiz, J. (2018). Performance analysis of squirrel-cage induction motors under broken rotor bar and stator inter-turn fault conditions using analytical modeling. Institute of Electrical and Electronics Engineers Transactions on Magnetics, 54(11), 1-5. https://doi.org/10.1109/TMAG.2018.2842240
[24] Liang, X., Ali, M. Z., & Zhang, H. (2020). Induction Motors Fault Diagnosis Using Finite Element Method: A Review. Institute of Electrical and Electronics Engineers Transactions on Industry Applications, 56(2), 1205-1217. https://doi.org/10.1109/TIA.2019.2958908
[25] Terron-Santiago, C., Martinez-Roman, J., Puche-Panadero, R., & Sapena-Bano, A. (2021). A review of techniques used for induction machine fault modelling. Sensors, 21(14), 4855. https://doi.org/10.3390/s21144855
[26] Kuczmann, M., Gadó, K., Horváth, S., Vajda, I., Marcsa, D., & Belahcen, A. (2018). Analysis of an Induction Machine by the Finite Element Method. Recent Innovations in Mechatronics, 5(1), 1-5. https://doi.org/10.17667/riim.2018.1/5
[27] Ding, Z., Bu, W., Cai, X., Wu, X., & Liu, S. (2019, October 12-13). Finite Element Analysis and Modeling of Three-Phase Induction Motor. 2019 4th International Conference on Insulating Materials, Material Application and Electrical Engineering, Melbourne, Australia. http://doi.org/10.1088/1757-899X/677/5/052055
[28] Halder, S., Bhat, S., & Dora, B. (2022). Prediction of broken rotor bar in induction motor using spectral entropy features and tlbo optimized svm. Turkish Journal of Electrical Engineering and Computer Sciences, 30(5), 1962-1979. https://doi.org/10.55730/13 00-0632.3916
[29] Mazouji, R., Khaloozadeh, H., & Arasteh, M. (2020, February 4-6). Fault Diagnosis of Broken Rotor Bars in Induction Motors Using Finite Element Analysis. 2020 11th Power Electronics, Drive Systems, and Technologies Conference, Tehran, Iran. https://doi. org/10.1109/PEDSTC49159.2020.9088429
[30] Tian, K., Zhang, T., Ai, Y., & Zhang, W. (2018). Induction motors dynamic eccentricity fault diagnosis based on the combined use of WPD and EMD-simulation study. Applied Sciences, 8(10), 1709. https://doi.org/10.3390/app8101709
[31] Fantin Irudaya Raj, E., & Appadurai, M. (2022). Static 2D-Finite Element Analysis of Eccentricity Fault in Induction Motor. In M. L. Kolhe, S. B. Jaju, & P. M. Diagavane (Eds.), Smart Technologies for Energy, Environment and Sustainable Development, Vol 1. Springer Nature Singapore. https://doi.org/10.1007/978-981-16-6875-3_33