بررسی تأثیر متغیرهای تصادفی بر تغییرات منحنی‌های IDA در قاب فولادی با سیستم دوگانه مهاربندی واگرا

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 عضو هیئت علمی، گروه مهندسی عمران، دانشگاه فنی و حرفه‌ای، تهران، ایران.

2 دکتری زلزله، گروه مهندسی عمران، دانشگاه صنعتی نوشیروان بابل،ایران.

10.48301/kssa.2023.387489.2464

چکیده

تحلیل دینامیکی افزاینده یکی از تحلیل‌های متداول در ارزیابی عملکرد لرزه‌ای سازه‌ها محسوب می‌شود. معمولاً در این روش از تأثیر عدم قطعیت‌ها صرف نظر می‌شود و تنها با در نظر گرفتن رکوردهای مختلف سعی می‌شود که عدم قطعیت بار لرزه‌ای مورد ارزیابی قرار گیرد. در این تحقیق سعی شده است با استفاده از دو روش مونت کارلو و دیاگرام تورنادو تأثیر متغیرهای تصادفی بر روی این منحنی‌ها بررسی شود. از این روی یک قاب 10 طبقه فولادی با سیستم دوگانه قاب خمشی دارای مهاربند برون محور انتخاب شده و سپس تأثیر عدم قطعیت‌ها بر منحنی‌های IDA آن بررسی شده است. در ابتدا با استفاده از روش مونت کارلو حساسیت منحنی IDA رکورد زلزلۀ بم نسبت به شش متغیر تصادفی شامل تنش تسلیم فولاد، بار مرده، بار زنده، طول دهانه، نسبت میرایی و مدول الاستیسه بررسی شده است. در ادامه با استفاده از روش دیاگرام تورنادو حساسیت زائی این متغیرها بر میانگین منحنی‌های IDA حاصل از 18 رکورد زلزله‌های مختلف بررسی شده است. نتایج نشان داده است بار مرده و تنش تسلیم بیشترین تأثیر را بر متغیرهای تصادفی داشته‌اند. همچنین میزان حساسیت زائی متغیرهای تصادفی با افزاش شتاب طیفی افزایش می‌یابد. مقایسۀ روش دیاگرام تورنادو با روش مونت کارلو نشان داده است روش دیاگرام تورنادو با حداکثر خطایی برابر با 12.4 % دقت مناسبی در ارزیابی حساسیت لرزه‌ای دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effect of Random Variables on the Changes of IDA Curves in the Dual System of Steel Frames and Divergent Bracing

نویسندگان [English]

  • Mhammad Javad Goodarzi 1
  • Majid Moradi 2
1 Faculty Member, Department of Civil Engineering, Technical and Vocational University (TVU), Tehran, Iran.
2 PhD in Earthquake Engineering, Department of Civil Engineering, Babol Noshirvani University of Technology, Iran.
چکیده [English]

Incremental dynamic analysis is one of the most common analyses in evaluating the seismic performance of structures. Usually, in this method, the influence of uncertainties is ignored and only by considering different records, it attempts to evaluate the uncertainty of seismic load. In this research, an attempt was made to investigate the effect of random variables on these curves by using two methods: Monte Carlo and Tornado diagram. A 10-story steel frame with a dual bending frame system with a divergent brace was selected and then the effect of uncertainties on its IDA curves was investigated. First, by using the Monte Carlo method, the sensitivity of the IDA curve of the Bam earthquake record with respect to six random variables including yield stress of steel, dead load, live load, span length, damping ratio and elastic modulus was investigated. Then, using the tornado diagram method, the sensitivity of these variables on the average IDA curves obtained from 18 records of different earthquakes was investigated. The results demonstrated that dead load and yield stress had the greatest impact on random variables. In addition, the degree of sensitivity of random variables increased with the increase of spectral acceleration. The comparison of the tornado diagram method with the Monte Carlo method illustrated that the tornado diagram method with a maximum error of 12.4% has a good accuracy in evaluating seismic sensitivity.

کلیدواژه‌ها [English]

  • IDA Curve
  • Monte Carlo Analysis
  • Tornado Diagram
  • Dual Diverging Bracing System
  • Seismic Sensitivity
[1] He, X., & Lu, Z. (2019). Seismic fragility assessment of a super tall building with hybrid control strategy using IDA method. Soil Dynamics and Earthquake Engineering, 123(3), 278-291. https://doi.org/10.1016/j.soildyn.2019.05.003
[2] Lu, X., & Su, N. (2012). IDA-based seismic fragility analysis of a complex high-rise structure. Journal of Earthquake Engineering and Engineering Vibration, 32(5), 19-25. https:/ /www.researchgate.net/publication/279543560_IDA-based_seismic_fragility_anal ysis_of_a_complex_high-rise_structure
[3] Hariri-Ardebili, M. A., Sattar, S., & Estekanchi, H. E. (2014). Performance-based seismic assessment of steel frames using endurance time analysis. Engineering Structures, 69(3), 216-234. https://doi.org/10.1016/j.engstruct.2014.03.019
[4] Jouneghani, H. G., & Haghollahi, A. (2020). Assessing the seismic behavior of steel moment frames equipped by elliptical brace through incremental dynamic analysis (IDA). Earthquake Engineering and Engineering Vibration, 19(2), 435-449. https://doi.org /10.1007/s11803-020-0572-z
[5] Mohsenian, V., Filizadeh, R., Hajirasouliha, I., & Garcia, R. (2021). Seismic performance assessment of eccentrically braced steel frames with energy-absorbing links under sequential earthquakes. Journal of Building Engineering, 33, 101576. https://doi.org /10.1016/j.jobe.2020.101576
[6] Mohammadi, M., Mirzaei, M., & Pashaie, M. R. (2021). Seismic performance and fragility analysis of infilled steel frame structures using a new multi-strut model. Structures, 34(3), 1403-1415. https://doi.org/10.1016/j.istruc.2021.08.015
[7] Moradi, M., & Abdolmohammadi, M. (2020). Seismic fragility evaluation of a diagrid structure based on energy method. Journal of Constructional Steel Research, 174(10), 106311. https://doi.org/10.1016/j.jcsr.2020.106311
[8] Goodarzi, M. J., & Moradi, M. (2022). Evaluation of Seismic Performance of Dual Flexural Frame with Eccentric Bracing, Horizontal Shear and Flexural Link in Consideration of the Effect of Soil-Structure Interaction under Near Field Record. Karafan Quarterly Scientific Journal, 19(3), 477-500. https://doi.org/10.48301/kssa.2022.326213.1968
[9] Moradi, M., Tavakoli, H., & AbdollahZade, G. (2020). Sensitivity analysis of the failure time of reinforcement concrete frame under postearthquake fire loading. Structural Concrete, 21(2), 625-641. https://doi.org/10.1002/suco.201900165
[10] Bojórquez, E., Terán-Gilmore, A., Ruiz, S. E., & Reyes-Salazar, A. (2011). Evaluation of Structural Reliability of Steel Frames: Interstory Drift versus Plastic Hysteretic Energy. Earthquake Spectra, 27(3), 661-682. https://doi.org/10.1193/1.3609856
[11] Lin, K-C., Lin, C-C. J., Chen, J-Y., & Chang, H-Y. (2010). Seismic reliability of steel framed buildings. Structural Safety, 32(3), 174-182. https://doi.org/10.1016/j.strusafe.2009 .11.001
[12] Nowak, A. S., & Collins, K. R. (2012). Reliability of Structures (2 ed.). Chemical Rubber Company Press. https://books.google.com/books?id=z98q9wLKCY4C
[13] Bhattacharyya, B., & Chakraborty, S. (2001). Sensitivity Statistics of 3D Structures under Parametric Uncertainty. Journal of Engineering Mechanics, 127(9), 909-914. https:/ /doi.org/10.1061/(ASCE)0733-9399(2001)127:9(909)
[14] Zhang, H., Ellingwood, B. R., & Rasmussen, K. J. R. (2014). System reliabilities in steel structural frame design by inelastic analysis. Engineering Structures, 81, 341-348. https://doi.org/10.1016/j.engstruct.2014.10.003
[15] Kim, J., Park, J-H., & Lee, T-H. (2011). Sensitivity analysis of steel buildings subjected to column loss. Engineering Structures, 33(2), 421-432. https://doi.org/10.1016/j.en gstruct.2010.10.025
[16] Borgonovo, E., & Plischke, E. (2016). Sensitivity analysis: A review of recent advances. European Journal of Operational Research, 248(3), 869-887. https://doi.org/10.101 6/j.ejor.2015.06.032
[17] Yang, J. (2011). Convergence and uncertainty analyses in Monte-Carlo based sensitivity analysis. Environmental Modelling & Software, 26(4), 444-457. https://doi.org/10.1 016/j.envsoft.2010.10.007
[18] Wei, P., Lu, Z., & Yuan, X. (2013). Monte Carlo simulation for moment-independent sensitivity analysis. Reliability Engineering & System Safety, 110, 60-67. https://doi .org/10.1016/j.ress.2012.09.005
[19] Borgonovo, E. (2017). Sensitivity Analysis: An Introduction for the Management Scientist. Springer International Publishing. https://books.google.com/books?id=H0K4DgA AQBAJ
[20] Porter, K. A., Beck, J. L., & Shaikhutdinov, R. V. (2002). Sensitivity of Building Loss Estimates to Major Uncertain Variables. Earthquake Spectra, 18(4), 719-743. https: //doi.org/10.1193/1.1516201
[21] Lee, T-H., & Mosalam, K. M. (2005). Seismic demand sensitivity of reinforced concrete shear-wall building using FOSM method. Earthquake Engineering & Structural Dynamics, 34(14), 1719-1736. https://doi.org/10.1002/eqe.506
[22] Rasouli, S., & Latifi, M. K. (2022). Numerical Study of the Combination of Steel Shear Wall with Eccentric Bracing Under Cyclic Loads. Karafan Quarterly Scientific Journal, 19(3), 393-412. https://doi.org/10.48301/kssa.2022.299081.1689
[23] Permanent Committee for Revisionof Building Regulations Against Earthquakes. (2014). Design regulations for buildings against earthquakes (2800 Standard). Bhrc. https:/ /www.bhrc.ac.ir/news/ID/1890
[24] Mazzoni, S., McKenna, F., Scott, M. H., & Fenves, G. L. (2006). OpenSees command language manual. The Regents of the University of California. https://opensees.berkeley.edu/ OpenSees/manuals/usermanual/OpenSeesCommandLanguageManualJune2006.pdf
[25] Caprili, S., Mussini, N., & Salvatore, W. (2018). Experimental and numerical assessment of EBF structures with shear links. Steel and Composite Structures, 28(2), 123-138. https://doi.org/10.12989/scs.2018.28.2.123