طراحی اقتصادی نیروگاه هیبرید بادی- خورشیدی مبتنی بر سیستم ذخیره ساز انرژی با در نظر گرفتن ضریب قطع معادل

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسنده

گروه مهندسی برق، دانشگاه فنی و حرفه ای، تهران، ایران

10.48301/kssa.2023.398615.2564

چکیده

یکی از راهکارها جهت افزایش بازدهی اقتصادی نیروگاه‌های تجدیدپذیر استفاده از طرح‌های هیبرید می‌باشد. خورشید و باد دو منبع عمدۀ انرژی‌های تجدیدپذیر می‌باشند که در آینده بخش بزرگی از تولید انرژی را به خود اختصاص می‌دهند. انرژی تأمین شده از این منابع غیر قابل پیش‌بینی بوده و در نتیجه برای بالا بردن قابلیت اطمینان و دسترسی بار، باید ظرفیت این نیروگاه ها و سیستم ذخیره‌ساز آنها بسیار بیشتر از مقدار تقاضای بار در نظر گرفته شود. در این مقاله یک سیستم هیبرید شامل توربین‌های بادی، آرایه‌های خورشیدی و پیل سوختی برای دو سناریو (الگو بار تابستانی و زمستانی) به گونه‌ای طراحی شده است که ضمن کمینه‌کردن هزینه‌های 20 سالۀ سیستم (هزینه‌های سرمایه‌گذاری اولیه، بهره‌برداری و نگهداری و همچنین هزینه از دست رفتن بار)، قید ضریب قطع معادل سیستم در کنار سایر قیود سیستم تأمین شود. از این رو داده‌های تابش خورشید و سرعت وزش باد مربوط به منطقه‌ای از کشور ایران (استان کرمان) در کنار الگوی بار درنظر گرفته شده و همچنین احتمال خروج اضطراری سه جزء عمدۀ سیستم یعنی توربین‌های بادی، آرایه‌های خورشیدی و مبدل AC/DC در نظر گرفته شده است. برای بهینه‌سازی و اعتبار سنجی از الگوریتم جستجوی کلاغ و الگوریتم PSO استفاده شده است. نتایج به‌دست آمده نشان می‌دهند اندازه‌یابی بهینۀ سیستم‌های تولید انرژی مبتنی بر منابع تجدیدپذیر، در کنار بهبود فنآوری تولید، اصلی‌ترین راهکار کاهش هزینه‌های این نوع سیستم‌ها می‌باشند. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Economic Design of a Hybrid Wind-Solar Power Plant Based on the Energy Storage System with Consideration of the Equivalent Loss Factor

نویسنده [English]

  • Mehdi Shafiee
Department of Electrical Engineering, Technical and Vocational University(TVU), Tehran, Iran
چکیده [English]

A hybrid plan is one of the solutions to increase the economic efficiency of renewable power plants. Photovoltaic and wind energy are the two major sources of renewable energy that will account for a large part of energy production in the future. The energy supplied from these sources is unpredictable, and as a result, to increase the reliability and availability of the load, the capacity of these power plants and their storage system should be considered much higher than demand. In this article, a hybrid system including wind turbines, solar arrays, and fuel cells for two scenarios, summer and winter load patterns, were designed. This proposed system minimizes the 20-year costs including initial investment, operation, and maintenance, as well as the cost of load losses. The equivalent loss factor of the system should be provided along with other constraints. Therefore, the solar radiation and wind speed data related to a region of Iran (Kerman Province) were considered in addition to the load pattern. The possibility of an emergency exit of three main components of the system, wind turbines, solar arrays, and AC/DC converter, was also considered, and the Crow search algorithm and PSO algorithm were used for optimization and validation. The results showed that the optimal sizing of energy production systems based on renewable resources in addition to the improvement of production technology are the main solutions for reducing the costs of these systems.

کلیدواژه‌ها [English]

  • Wind Turbine
  • Solar Array
  • Fuel Cell
  • Equivalent Loss Factor
[1] Swisher, R., Azua, C. R. D., & Clendenin, J. (2001). Strong winds on the horizon: wind power comes of age. Proceedings of the Institute of Electrical and Electronics Engineers, 89(12), 1757-1764. https://doi.org/10.1109/5.975903
[2] Sayed, E. T., Olabi, A. G., Alami, A. H., Radwan, A., Mdallal, A., Rezk, A., & Abdelkareem, M. A. (2023). Renewable Energy and Energy Storage Systems. Energies, 16(3), 1415. https://doi.org/10.3390/en16031415
[3] Agajie, T. F., Ali, A., Fopah-Lele, A., Amoussou, I., Khan, B., Velasco, C. L. R., & Tanyi, E. (2023). A Comprehensive Review on Techno-Economic Analysis and Optimal Sizing of Hybrid Renewable Energy Sources with Energy Storage Systems. Energies, 16(2), 642. https://doi.org/10.3390/en16020642
[4] Ayesha, Numan, M., Baig, M. F., & Yousif, M. (2023). Reliability evaluation of energy storage systems combined with other grid flexibility options: A review. Journal of Energy Storage, 63, 107022. https://doi.org/10.1016/j.est.2023.107022
[5] Kumar, S., Saket, R. K., Dheer, D. K., Holm-Nielsen, J. B., & Sanjeevikumar, P. (2020). Reliability enhancement of electrical power system including impacts of renewable energy sources: a comprehensive review. The Institution of Engineering and Technology Generation, Transmission & Distribution, 14(10), 1799-1815. https://doi.org/10.10 49/iet-gtd.2019.1402
[6] Zhou, P., Jin, R. Y., & Fan, L. W. (2016). Reliability and economic evaluation of power system with renewables: A review. Renewable and Sustainable Energy Reviews, 58, 537-547. https://doi.org/10.1016/j.rser.2015.12.344
[7] Ntziachristos, L., Kouridis, C., Samaras, Z., & Pattas, K. (2005). A wind-power fuel-cell hybrid system study on the non-interconnected Aegean islands grid. Renewable Energy, 30(10), 1471-1487. https://doi.org/10.1016/j.renene.2004.11.007
[8] Noori, A., Jafari Shahbazadeh, M., & Eslami, M. (2020). Designing of wide-area damping controller for stability improvement in a large-scale power system in presence of wind farms and SMES compensator. International Journal of Electrical Power & Energy Systems, 119(82), 105936. https://doi.org/10.1016/j.ijepes.2020.105936
[9] Mahesh, A., & Sandhu, K. S. (2020). A genetic algorithm based improved optimal sizing strategy for solar-wind-battery hybrid system using energy filter algorithm. Frontiers in Energy, 14(1), 139-151. https://doi.org/10.1007/s11708-017-0484-4
[10] Khan, M. J., & Iqbal, M. T. (2005). Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland. Renewable Energy, 30(6), 835-854. https://doi.or g/10.1016/j.renene.2004.09.001
[11] Mellit, A., Benghanme, M., Hadjarab, A., & Guessoum, A. (2004, June 5). An adaptive wavenet model for sizing of stand-alone photovoltaic systems. Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Mechatronics, 2004, Istanbul, Turkey. https://doi.org/10.1109/ICMECH.2004.1364402
[12] Torres, L. A., RodrÍGuez, F. J., & Sebastian, P. J. (1998). Simulation of a solar-hydrogen-fuel cell system: results for different locations in Mexico. International Journal of Hydrogen Energy, 23(11), 1005-1009. https://doi.org/10.1016/S0360-3199(98)00024-X
[13] Li, J., Zhao, J., Chen, Y., Mao, L., Qu, K., & Li, F. (2023). Optimal sizing for a wind-photovoltaic-hydrogen hybrid system considering levelized cost of storage and source-load interaction. International Journal of Hydrogen Energy, 48(11), 4129-4142. htt ps://doi.org/10.1016/j.ijhydene.2022.10.271
[14] Hedström, L., Wallmark, C., Alvfors, P., Rissanen, M., Stridh, B., & Ekman, J. (2004). Description and modelling of the solar–hydrogen–biogas-fuel cell system in GlashusEtt. Journal of Power Sources, 131(1-2), 340-350. https://doi.org/10.1016/j.jpowsour.2 003.11.094
[15] Ghosh, P. C., Emonts, B., & Stolten, D. (2003). Comparison of hydrogen storage with diesel-generator system in a PV–WEC hybrid system. Solar Energy, 75(3), 187-198. https: //doi.org/10.1016/j.solener.2003.08.004
[16] Khan, M. J., & Iqbal, M. T. (2005). Dynamic modeling and simulation of a small wind–fuel cell hybrid energy system. Renewable Energy, 30(3), 421-439. https://doi.org/10.10 16/j.renene.2004.05.013
[17] Ghaemi, S., & Moghaddas-Tafreshi, S. (2007, February 14-16). Optimal sizing of grid-connected hybrid power system in qeshm island in persian golf of Iran. Internationale Energiewirtschaftstagung an der Technische Universität Wien, Vienna, Austria. http s://www.researchgate.net/publication/228421287_OPTIMAL_SIZING_OF_GRID-CONNECTED_HYBRID_POWER_SYSTEM_IN_QESHM_ISLAND_IN_PER SIAN_GOLF_OF_IRAN
[18] Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Computers & Structures, 169, 1-12. https://doi.org/10.1016/j.compstruc.2016.03.001
[19] Boucenna, K., Sebbagh, T., & Benchouia, N-E. (2023). Modeling, Optimization, and Techno-Economic Assessment of a Hybrid System Composed of Photovoltaic-Wind-Fuel Cell and Battery Bank. Journal Européen des Systèmes Automatisés, 56(1), 29-34. https:/ /doi.org/10.18280/jesa.560104
[20] Yuan, H.-B., Zou, W-J., Jung, S., & Kim, Y-B. (2022). Optimized rule-based energy management for a polymer electrolyte membrane fuel cell/battery hybrid power system using a genetic algorithm. International Journal of Hydrogen Energy, 47(12), 7932-7948. https://doi.org/10.1016/j.ijhydene.2021.12.121
[21] Arsalis, A., Papanastasiou, P., & Georghiou, G. E. (2022). A comparative review of lithium-ion battery and regenerative hydrogen fuel cell technologies for integration with photovoltaic applications. Renewable Energy, 191, 943-960. https://doi.org/10.1016 /j.renene.2022.04.075
[22] El-Sattar, H. A., Kamel, S., Sultan, H. M., Zawbaa, H. M., & Jurado, F. (2022). Optimal design of Photovoltaic, Biomass, Fuel Cell, Hydrogen Tank units and Electrolyzer hybrid system for a remote area in Egypt. Energy Reports, 8, 9506-9527. https://doi.org/10. 1016/j.egyr.2022.07.060
[23] Khan, A., & Javaid, N. (2020). Optimal sizing of a stand-alone photovoltaic, wind turbine and fuel cell systems. Computers & Electrical Engineering, 85, 106682. https://doi. org/10.1016/j.compeleceng.2020.106682
[24] El-Sharkh, M. Y., Tanrioven, M., Rahman, A., & Alam, M. S. (2006). Cost related sensitivity analysis for optimal operation of a grid-parallel PEM fuel cell power plant. Journal of Power Sources, 161(2), 1198-1207. https://doi.org/10.1016/j.jpowsour.2006.06.046
[25] O'hayre, R., Cha, S-W., Colella, W., & Prinz, F. B. (2016). Fuel cell fundamentals (3 ed.). John Wiley & Sons. https://doi.org/10.1002/9781119191766
[26] Rahmat, M. K., & Jovanovic, S. (2009). Reliability modelling of uninterruptible power supply systems using fault tree analysis method. European Transactions on Electrical Power, 19(2), 258-273. https://doi.org/10.1002/etep.211
[27] Billinton, R., & Allan, R. N. (1992). Reliability evaluation of engineering systems. Springer. https://doi.org/10.1007/978-1-4615-7728-7
[28] Askari, F. (2021). Assessment of the Impact of Distributed Generation and Distribution Network Faults on Generation Reliability Indices. Karafan Quarterly Scientific Journal, 18(3), 13-33. https://doi.org/10.48301/kssa.2021.277262.1427
[29] Cervan, D., Coronado, A. M., & Luyo, J. E. (2023). Cluster-based stratified sampling for fast reliability evaluation of composite power systems based on sequential Monte Carlo simulation. International Journal of Electrical Power & Energy Systems, 147(17), 108813. https://doi.org/10.1016/j.ijepes.2022.108813
[30] Hosseini, A., Hedayati, M., & Khaledian, A. (2022). Multi-Objective Planning of Distributed Generation in the Electricity Network Considering the Interests of the Resource Investor and Network Operator. Karafan Quarterly Scientific Journal, 19(3), 279-303. https: //doi.org/10.48301/kssa.2022.328036.1988
[31] Jia, H., Peng, R., Yang, L., Wu, T., Liu, D., & Li, Y. (2022). Reliability evaluation of demand-based warm standby systems with capacity storage. Reliability Engineering & System Safety, 218, 108132. https://doi.org/10.1016/j.ress.2021.108132
[32] Zhang, J., Liu, J., Chen, L., Zhang, L., Zeng, P., & Li, Y. (2023). Reliability evaluation of high permeability renewable energy distribution network considering energy storage charge and discharge strategy. Energy Reports, 9(3), 361-368. https://doi.org/10.10 16/j.egyr.2023.01.006
[33] Garcia, R. S., & Weisser, D. (2006). A wind–diesel system with hydrogen storage: Joint optimisation of design and dispatch. Renewable Energy, 31(14), 2296-2320. https:// doi.org/10.1016/j.renene.2005.11.003
[34] Hakimi, S. M., Tafreshi, S. M. M., & Kashefi, A. (2007, August 18-21). Unit Sizing of a Stand-alone Hybrid Power System Using Particle Swarm Optimization (PSO). 2007 Institute of Electrical and Electronics Engineers International Conference on Automation and Logistics, Jinan, China. https://doi.org/10.1109/ICAL.2007.4339116
[35] Shahirinia, A. H., Tafreshi, S. M. M., Gastaj, A. H., & Moghaddomjoo, A. R. (2005, November 18). Optimal sizing of hybrid power system using genetic algorithm. 2005 International Conference on Future Power Systems, Amsterdam, Netherland. https://doi.org/10.1 109/FPS.2005.204314
[36] Billinton, R., & Allan, R. N. (1984). Reliability evaluation of power systems. Springer h ttps://doi.org/10.1007/978-1-4615-7731-7