اندرکنش سیال-جامد و انتقال حرارت درون محفظۀ شیب‌دار با پرۀ ارتجاعی

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

عضو هیئت علمی، گروه مهندسی مکانیک، دانشگاه فنی و حرفه‌ای، تهران، ایران.

10.48301/kssa.2023.395506.2538

چکیده

در این مطالعه اثرات برهم­کنش دوطرفه سیال هوا با یک پرۀ ارتجاعی لاستیکی در یک محفظۀ شیب‌دار به روش عددی مدل­‌سازی شده است. دیوار­های بالا و پایین محفظه عایق، دیوار سمت چپ گرم و دیوار سمت راست محفظه، سرد است. هدف این است که به بررسی نرخ انتقال حرارت از دیوار گرم با محاسبۀ عدد ناسلت و تنش فون‌میزز در ریشۀ پره در شیب‌های مختلف محفظه بپردازیم. بدین منظور هندسۀ حل در محیط نرم‌افزار ورکبنچ مدل‌سازی شد. برای حل جریان جابجایی مغشوش (Ra>107) از مدل k-ɛ استفاده‌ شده است. در گام نخست تأثیر وجود پرۀ ارتجاعی در مقایسه با پرۀ صلب بررسی شد و مشخص شد که مقادیر عدد ناسلت به‌عنوان نرخ انتقال حرارت از دیوار گرم برای پرۀ ارتجاعی ۵ درصد بیشتر از پرۀ صلب است. سپس تأثیر شیب محفظه بر میزان انتقال حرارت و عدد و تنش فون­‌میزز در ریشۀ پره بررسی شد. نتایج به‌دست‌آمده حاکی از آن است انتقال حرارت در دیوارۀ گرم با افزایش شیب محفظه از a=0.01 تا a=0.035 حدود ۴ درصد افزایش می‌یابد، حداکثر عدد ناسلت در شیب a=0.035 به‌دست آمد که مقدار بیشنه آن ۴۰ است. همچنین دیده شد که مقدار تنش فون­‌میزز در ریشۀ پره در محفظه با شیب a=0.035 ۴۰ درصد بیشتر از تنش فون‌میزز در ریشۀ پره در محفظه با شیب a=0.01  است. مقدار تنش فون­‌میزز ریشۀ پرۀ نوسانات شدیدی متحمل می‌شود و به سمت یک عدد ثابت میل می‌کند و بعد از چند ثانیه به یک حالت پایا می‌رسد.

کلیدواژه‌ها


عنوان مقاله [English]

Transient Fluid-Solid Interaction and Heat Transfer in an Inclined Cavity with Elastic Baffle

نویسندگان [English]

  • Ayoub Khosravi Farsani
  • Behroz Asadi Borujeni
Instructor, Department of Mechanical Engineering, Technical and Vocational Univercity (TVU), Tehran, Iran.
چکیده [English]

In this study, the effects of fluid-solid interaction with an elastic rubber baffle in an inclined cavity were modelled numerically. In the upper and lower walls of the insulated chamber, the left wall is hot and the right wall is cold. The goal of the present research was to investigate the rate of heat transfer from the hot wall by calculating the Nusselt number and the von Mises stress at the root of the baffle at different slopes of the cavity. For this purpose, the solution geometry was modelled in the workbench software environment. k-ɛ method was used to solve the turbulent displacement flow (Ra>107). First, the effect of the presence of an elastic baffle compared to a rigid baffle was investigated. The values of the Nusselt number as the heat transfer rate from the hot wall for the elastic Baffle were 5% higher than the rigid Baffle. Then, the effect of the Inclined Cavity on the heat transfer rate, Nusselt number and von Mises stress in the root of the baffle was investigated. The heat transfer in the hot wall increased by approximately 4% with an increase in the slope of the cavity from a=0.01 to a=0.035. The maximum Nusselt number was obtained at slope a=0.035, and its maximum value was 40. It was also observed that the von Mises stress in the vane root in the cavity with a slope of a=0.035 was 40% higher than the von Mises stress in the vane root in the cavity with a slope of a=0.01. The Von Mises stress value of the root of the baffle underwent severe fluctuations tending towards a constant number and reaching a steady state after a few seconds.

کلیدواژه‌ها [English]

  • Natural Convection
  • Fluid-Solid Interaction
  • Heat Transfer
  • Elastic Baffle
  • Inclined Cavity
[1] Batchelor, G. K. (1954). Heat transfer by free convection across a closed cavity between vertical boundaries at different temperatures. Quarterly of Applied Mathematics, 12(3), 209-233. https://doi.org/10.1090/qam/64563
[2] Fu, W.-S., & Shieh, W.-J. (1993). Transient thermal convection in an enclosure induced simultaneously by gravity and vibration. International Journal of Heat and Mass Transfer, 36(2), 437-452. https://doi.org/10.1016/0017-9310(93)80019-Q
[3] Saleem, S., Nguyen-Thoi, T., Shafee, A., Li, Z., Bonyah, E., Khan, A. U., & Shehzadi, I. (2019). Steady laminar natural convection of nanofluid under the impact of magnetic field on two-dimensional cavity with radiation. American Institute of Physics Advances, 9(6), 065008. https://doi.org/10.1063/1.5109192
[4] Hashim, I., Alsabery, A. I., Sheremet, M. A., & Chamkha, A. J. (2019). Numerical investigation of natural convection of Al2O3-water nanofluid in a wavy cavity with conductive inner block using Buongiorno’s two-phase model. Advanced Powder Technology, 30(2), 399-414. https://doi.org/10.1016/j.apt.2018.11.017
[5] Keyhani Asl, A., Hossainpour, S., Rashidi, M. M., Sheremet, M. A., & Yang, Z. (2019). Comprehensive investigation of solid and porous fins influence on natural convection in an inclined rectangular enclosure. International Journal of Heat and Mass Transfer, 133, 729-744. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.156
[6] Bendaraa, A., Charafi, M. M., & Hasnaoui, A. (2019). Numerical study of natural convection in a differentially heated square cavity filled with nanofluid in the presence of fins attached to walls in different locations. Physics of Fluids, 31(5), 052003. https://doi.org/10.1063/1.5091709
[7] Menni, Y., Chamkha, A., Zidani, C., & Benyoucef, B. (2020). Baffle orientation and geometry effects on turbulent heat transfer of a constant property incompressible fluid flow inside a rectangular channel. International Journal of Numerical Methods for Heat & Fluid Flow, 30(6), 3027-3052. https://doi.org/10.1108/HFF-12-2018-0718
[8] Keramat, F., Azari, A., Rahideh, H., & Abbasi, M. (2020). A CFD parametric analysis of natural convection in an H-shaped cavity with two-sided inclined porous fins. Journal of the Taiwan Institute of Chemical Engineers, 114, 142-152. https://doi. org/10.1016/j.jtice.2020.09.011
[9] Li, Z., Hussein, A. K., Younis, O., Afrand, M., & Feng, S. (2020). Natural convection and entropy generation of a nanofluid around a circular baffle inside an inclined square cavity under thermal radiation and magnetic field effects. International Communications in Heat and Mass Transfer, 116(4), 104650. https://doi.org/10.10 16/j.icheatmasstransfer.2020.104650
[10] Gokulavani, P., Muthtamilselvan, M., Al-Mdallal, Q. M., & Doh, D. (2020). Effects of orientation of the centrally placed heated baffle in an alternative configured ventilation cavity. The European Physical Journal Plus, 135(1), 23. https://doi.org/ 10.1140/epjp/s13360-019-00070-7
[11] Ghalambaz, M., Jamesahar, E., Ismael, M. A., & Chamkha, A. J. (2017). Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity. International Journal of Thermal Sciences, 111, 256-273. https:// doi.org/10.1016/j.ijthermalsci.2016.09.001
[12] Alsabery, A. I., Sheremet, M. A., Ghalambaz, M., Chamkha, A. J., & Hashim, I. (2018). Fluid-structure interaction in natural convection heat transfer in an oblique cavity with a flexible oscillating fin and partial heating. Applied Thermal Engineering, 145, 80-97. https://doi.org/10.1016/j.applthermaleng.2018.09.039
[13] Raisi, A., & Arvin, I. (2018). A numerical study of the effect of fluid-structure interaction on transient natural convection in an air-filled square cavity. International Journal of Thermal Sciences, 128, 1-14. https://doi.org/10.1016/j.ijth ermalsci.2018.02.012
[14] Hussein, A. K., Ghodbane, M., Said, Z., & Ward, R. S. (2022). The effect of the baffle length on the natural convection in an enclosure filled with different nanofluids. Journal of Thermal Analysis and Calorimetry, 147(1), 791-813. https://doi.org/10. 1007/s10973-020-10300-1
[15] Ghalambaz, M., Mehryan, S. A. M., Alsabery, A. I., Hajjar, A., Izadi, M., & Chamkha, A. (2020). Controlling the natural convection flow through a flexible baffle in an L-shaped enclosure. Meccanica, 55(8), 1561-1584. https://doi.org/10.1007/s11012-020-01194-2
[16] Saleh, H., Hashim, I., Jamesahar, E., & Ghalambaz, M. (2020). Effects of flexible fin on natural convection in enclosure partially-filled with porous medium☆. Alexandria Engineering Journal, 59(5), 3515-3529. https://doi.org/10.1016/j.aej.2020.05.034
[17] Jahani, K., & Dehnad, M. (2014). Predicting the shock isolation behaviour of a hydraulic engine mount by 3D finite element modeling of fluid-structure-interaction. Modares Mechanical Engineering, 14(4), 122-128. http://mme.modares.ac.ir/article-15-8903-en.html
[18] Askari, N., & Taheri, M. H. (2020). Numerical Investigation of a MHD Natural Convection Heat Transfer Flow in a Square Enclosure with Two Heaters on the Bottom Wall. Karafan Quarterly Scientific Journal, 17(1), 97-114. https://doi.org/ 10.48301/kssa.2020.112759
[19] Moradicheghamahi, J., Jahangiri, M., Mousaviraad, M., & Sadeghi, M. R. (2020). Computational studies of comparative and cumulative effects of turbulence, fluid–structure interactions, and uniform magnetic fields on pulsatile non-Newtonian flow in a patient-specific carotid artery. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(10), 518. https://doi.org/10.1007/s40430-020-02608-8
[20] Sharifzadeh, B., Kalbasi, R., & Jahangiri, M. (2020). The effect of turbulence model on predicting the development and progression of coronary artery atherosclerosis. Journal of Computational & Applied Research in Mechanical Engineering 10(1), 183-199. https://doi.org/10.22061/jcarme.2019.4628.1561
[21] Sadeghi, M. R., Jahangiri, M., & Saghafian, M. (2020). The impact of uniform magnetic field on the pulsatile non-Newtonian blood flow in an elastic stenosed artery. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(11), 570. https://doi.org/10.1007/s40430-020-02651-5
[22] Jahangiri, M., Farsani, R. Y., & Shamsabadi, A. A. (2019). Numerical investigation of the water/alumina nanofluid within a microchannel with baffles. Journal of Mechanical Engineering and Technology 10(2), 67-76. https://doi.org/10.2022/ jmet.v10i2.4759
[23] Motahar, S., & Jahangiri, M. (2020). Transient heat transfer analysis of a phase change material heat sink using experimental data and artificial neural network. Applied Thermal Engineering, 167, 114817. https://doi.org/10.1016/j.applthermaleng.2019. 114817
[24] Haghani, A., Jahangiri, M., Yadollahi Farsani, R., Khosravi Farsani, A., & Fazilatmanesh, J. (2021). Transient fluid-solid interaction and heat transfer in a cavity with elastic baffles mounted on the sidewalls. Mathematical Problems in Engineering, 2021(3), 1-15. https://doi.org/10.1155/2021/8842898
[25] Jahangiri, M., Saghafian, M., & Sadeghi, M. (2015). Numerical Study of Turbulent Pulsatile Blood Flow through Stenosed Artery Using Fluid-Solid Interaction. Computational and Mathematical Methods in Medicine, 2015, 1-10. https://doi. org/10.1155/2015/515613