تأثیر اعمال مبرد a410R به عنوان سیال خنک‌کننده بر انحراف ابعادی و زبری سطح در تراشکاری فولاد 1045 در مقایسه با سیال آب - صابون

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 کارشناس ارشد، مهندسی مکانیک، دانشگاه آزاد اسلامی واحد ساوه، ساوه، ایران.

2 هیات علمی، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد ساوه، ساوه، ایران.

10.48301/kssa.2023.383018.2427

چکیده

اصطکاک بین ابزار و قطعۀ کار حین عملیات ماشینکاری همیشه سبب افزایش نرخ فرسایش ابزار می­شود. برطرف ساختن این مشکل با استفاده از سیالات و خنک­کاری ابزارها امری ضروری است. در این تحقیق انحراف ابعادی و زبری سطح فولاد (45CK) 1045 در براده برداری با ابزاری از جنس فولاد تندبر (HSS) در سرعت‌های برشی 15، 25، 40 و 55 متر بر دقیقه، عمق­های براده‌برداری 5/0، 1و 5/1میلیمتر و مقادیر پیشروی 05/0، 12/0 و2/0 میلیمتر بر دور، در دو حالت خنک‌کاری سیال آب صابون و مبرد a410R بررسی شد. نتایج به­دست آمده نشان می­دهد که خنک­کاری به­وسیلۀ مبرد a410R به علت قدرت سرمایش بالا و کنترل بهتر دمای محل برش نسبت به سیال آب صابون در فرآیند ماشین‌کاری، سبب کاهش میزان فرسایش ابزار گردیده و می‌تواند به عنوان یکی از سیالات مناسب خنک­کاری به کار گرفته شود. براساس کمینه­های مقدار انحراف ابعادی و زبری سطح در شرایط مختلف، با استفاده از مبرد a410R می­توان سرعت برشی را 60 درصد افزایش داد و از 25 به 40 متر بر دقیقه رساند. همچنین در بهینه­ترین حالت در سرعت برشی 40 متربر دقیقه، عمق براد­ه­برداری 1میلیمتر و مقادیر پیشروی05/0 میلیمتر بر دور، انحراف ابعادی و زبری سطح تا 6 و 10 برابر بهبود می­یابد. در حالت بهینه، انحراف ابعادی براساس اختلاف قطر در طول 300 میلیمتر به 14 میکرون و زبری سطح پس از گذشت 60 دقیقه از زمان براده برداری، به 3.1 میکرومتر کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Applying R410a Refrigerant as a Cooling Fluid on Dimensional Deviation and Surface Roughness in Turning 1045 Steel Compared to Soap-Water Fluid

نویسندگان [English]

  • Mohammad-Javad Haghparast 1
  • Alireza Motahari 2
  • Gholamreza Khalaj 2
1 M.Sc., Mechanical Engineering, Savah Branch, Islamic Azad University, Saveh, Iran.
2 Faculty Member, Department of Engineering, Savah Branch, Islamic Azad University, Saveh, Iran.
چکیده [English]

In this research, the life of the tool and the wear rate of the cutting edge of the tool were investigated using R410a coolant in cooling the cutting edge of the tool and comparing it with the traditional fluid of soapy water. In addition, dimensional deviation and surface roughness of steel (ck45) 1045 in chipping with a high-speed steel (HSS) tool at cutting speeds of 15, 25, 40, and 55 meters per minute cutting depths of 0.5, 1, and 1.5 mm and feed rate of 0.05, 0.12, and 0.2 mm /rev were investigated in two modes of liquid cooling, soapy water and R410a coolant. The obtained results showed that cooling with R410a refrigerant, due to its high cooling power and better control of the temperature of the cutting area compared to the soapy water fluid in the machining process, reduced the amount of tool wear and can be used as one of the suitable cooling fluids. Based on the minimum values of dimensional deviation and surface roughness under different conditions, by using R410a refrigerant, the cutting speed can be increased by 60% from 25 m/min to 40 m/min. Furthermore, in the most optimal mode, at a cutting speed of 40/min, the chipping depth is 1 mm and the advance values are 0.05 mm per round, the dimensional deviation and surface roughness are improved by up to 6 and 10 times. In the optimal state, the dimensional deviation based on the diameter difference in 300 mm length is 14 microns and the surface roughness will decrease to 3.1 micrometers after 60 minutes of chipping time.

کلیدواژه‌ها [English]

  • Tool Wear
  • Cryogenic Cooling
  • Dimensional Deviation Surface Roughness
  • Tool
[1] Adler, D. P., Hii, W. W. S., Michalek, D. J., & Sutherland, J. W. (2006). Examining the role of cutting fluids in machining and efforts to address associated environmental/health concerns. Machining Science and Technology, 10(1), 23-58. https://doi.org/10.1080 /10910340500534282
[2] Diniz, A. E., & Micaroni, R. (2002). Cutting conditions for finish turning process aiming: the use of dry cutting. International Journal of Machine Tools and Manufacture, 42(8), 899-904. https://doi.org/10.1016/S0890-6955(02)00028-7
[3] Neto, L. M. G., Rodriguez, R. L., Lopes, J. C., Ribeiro, F. S. F., De Moraes, D. L., de Angelo Sanchez, L. E., De Mello, H. J., & Bianchi, E. C. (2023). Evaluating the optimized lubri-cooling technique for various cutting conditions in through-feed centerless grinding process. The International Journal of Advanced Manufacturing Technology, 125(7), 3465-3473. https://doi.org/10.1007/s00170-023-10933-0
[4] Talon, A. G., Sato, B. K., Rodrigues, M. d. S., Ávila, B. N., Cuesta, J. L., Ribeiro, F. S. F., Rodrigues, A. R., Sanchez, L. E. d. A., Bianchi, E. C., & Lopes, J. C. (2022). Green manufacturing concept applied to the grinding process of advanced ceramics using an alternative lubri-refrigeration technique. The International Journal of Advanced Manufacturing Technology, 123(7), 2771-2782. https://doi.org/10.1007/s00170-02 2-10385-y
[5] Yildiz, Y., & Nalbant, M. (2008). A review of cryogenic cooling in machining processes. International Journal of Machine Tools and Manufacture, 48(9), 947-964. https://d oi.org/10.1016/j.ijmachtools.2008.01.008
[6] Abukhshim, N. A., Mativenga, P. T., & Sheikh, M. A. (2006). Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining. International Journal of Machine Tools and Manufacture, 46(7-8), 782-800. https:// doi.org/10.1016/j.ijmachtools.2005.07.024
[7] Duarte Costa, D. M., Brito, T. G., De Paiva, A. P., Leme, R. C., & Balestrassi, P. P. (2016). A normal boundary intersection with multivariate mean square error approach for dry end milling process optimization of the AISI 1045 steel. Journal of Cleaner Production, 135, 1658-1672. https://doi.org/10.1016/j.jclepro.2016.01.062
[8] Krolczyk, G. M., Maruda, R. W., Krolczyk, J. B., Wojciechowski, S., Mia, M., Nieslony, P., & Budzik, G. (2019). Ecological trends in machining as a key factor in sustainable production – A review. Journal of Cleaner Production, 218, 601-615. https://doi.org /10.1016/j.jclepro.2019.02.017
[9] Majumdar, P., Jayaramachandran, R., & Ganesan, S. (2005). Finite element analysis of temperature rise in metal cutting processes. Applied Thermal Engineering, 25(14-15), 2152-2168. https://doi.org/10.1016/j.applthermaleng.2005.01.006
[10] Paul, S., & Chattopadhyay, A. B. (2006). Environmentally conscious machining and grinding with cryogenic cooling. Machining Science and Technology, 10(1), 87-131. https://d oi.org/10.1080/10910340500534316
[11] Ahmed, M. I., Ismail, A. F., Abakr, Y. A., & Amin, A. K. M. N. (2007). Effectiveness of cryogenic machining with modified tool holder. Journal of Materials Processing Technology, 185(1-3), 91-96. https://doi.org/10.1016/j.jmatprotec.2006.03.123
[12] Hernández-González, L. W., Dumitrescu, L., Quesada-Estrada, A. M., & Reyes-Camareno, R. (2020). Cutting parameters determination in milling of AISI 1045 steel. Universidad y Sociedad, 12(6), 207-214. https://rus.ucf.edu.cu/index.php/rus/article/view/1833
[13] Hernández González, L. W., Seid Ahmed, Y., Pérez Rodríguez, R., Zambrano Robledo, P. D. C., & Guerrero Mata, M. P. (2018). Selection of Machining Parameters Using a Correlative Study of Cutting Tool Wear in High-Speed Turning of AISI 1045 Steel. Journal of Manufacturing and Materials Processing, 2(4), 66. https://doi.org/10.33 90/jmmp2040066
[14] Shnfir, M., Olufayo, O. A., Jomaa, W., & Songmene, V. (2019). Machinability Study of Hardened 1045 Steel When Milling with Ceramic Cutting Inserts. Materials, 12(23), 3974. https://doi.org/10.3390/ma12233974
[15] Ajaja, J., Jomaa, W., Bocher, P., Chromik, R. R., Songmene, V., & Brochu, M. (2019). Hard turning multi-performance optimization for improving the surface integrity of 300M ultra-high strength steel. The International Journal of Advanced Manufacturing Technology, 104(1), 141-157. https://doi.org/10.1007/s00170-019-03863-3
[16] Bartarya, G., & Choudhury, S. K. (2012). State of the art in hard turning. International Journal of Machine Tools and Manufacture, 53(1), 1-14. https://doi.org/10.1016/j.ij machtools.2011.08.019
[17] Cui, X., Jiao, F., Zhao, B., & Guo, J. (2017). A review of high-speed intermittent cutting of hardened steel. The International Journal of Advanced Manufacturing Technology, 93(9), 3837-3846. https://doi.org/10.1007/s00170-017-0815-y
[18] Li, B., Zhang, S., Yan, Z., & Zhang, J. (2018). Effect of edge hone radius on chip formation and its microstructural characterization in hard milling of AISI H13 steel. The International Journal of Advanced Manufacturing Technology, 97(1), 305-318. https://doi.org/10. 1007/s00170-018-1933-x
[19] Brito, T. G., Paiva, A. P., Paula, T. I., Dalosto, D. N., Ferreira, J. R., & Balestrassi, P. P. (2016). Optimization of AISI 1045 end milling using robust parameter design. The International Journal of Advanced Manufacturing Technology, 84(5), 1185-1199. h ttps://doi.org/10.1007/s00170-015-7764-0
[20] Chinchanikar, S., & Choudhury, S. K. (2015). Machining of hardened steel—Experimental investigations, performance modeling and cooling techniques: A review. International Journal of Machine Tools and Manufacture, 89(9), 95-109. https://doi.org/10.1016/j .ijmachtools.2014.11.002
[21] Fnides, M., Yallese, M. A., Khattabi, R., Mabrouki, T., & Girardin, F. (2017). Modeling and optimization of surface roughness and productivity thru RSM in face milling of AISI 1040 steel using coated carbide inserts. International Journal of Industrial Engineering Computations, 8(4), 493-512. https://doi.org/10.5267/j.ijiec.2017.3.001
[22] Lawal, S. A., Choudhury, I. A., & Nukman, Y. (2013). A critical assessment of lubrication techniques in machining processes: a case for minimum quantity lubrication using vegetable oil-based lubricant. Journal of Cleaner Production, 41, 210-221. https://d oi.org/10.1016/j.jclepro.2012.10.016
[23] Masmiati, N., & Sarhan, A. A. D. (2015). Optimizing cutting parameters in inclined end milling for minimum surface residual stress – Taguchi approach. Measurement, 60, 267-275. https://doi.org/10.1016/j.measurement.2014.10.002
[24] Masmiati, N., Sarhan, A. A. D., Hassan, M. A. N., & Hamdi, M. (2016). Optimization of cutting conditions for minimum residual stress, cutting force and surface roughness in end milling of S50C medium carbon steel. Measurement, 86, 253-265. https://doi.or g/10.1016/j.measurement.2016.02.049
[25] Muñoz-Escalona, P., Díaz, N., & Cassier, Z. (2012). Prediction of Tool Wear Mechanisms in Face Milling AISI 1045 Steel. Journal of Materials Engineering and Performance, 21(6), 797-808. https://doi.org/10.1007/s11665-011-9964-6
[26] Araújo Junior, A. S., Sales, W. F., Da Silva, R. B., Costa, E. S., & Rocha Machado, Á. (2017). Lubri-cooling and tribological behavior of vegetable oils during milling of AISI 1045 steel focusing on sustainable manufacturing. Journal of Cleaner Production, 156, 635-647. https://doi.org/10.1016/j.jclepro.2017.04.061
[27] Iqbal, S. A., Mativenga, P. T., & Sheikh, M. A. (2007). Characterization of machining of AISI 1045 steel over a wide range of cutting speeds. Part 2: Evaluation of flow stress models and interface friction distribution schemes. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(5), 917-926. https://doi.org/10.1243/09544054jem797
[28] Debnath, S., Reddy, M. M., & Yi, Q. S. (2014). Environmental friendly cutting fluids and cooling techniques in machining: a review. Journal of Cleaner Production, 83, 33-47. https://doi.org/10.1016/j.jclepro.2014.07.071
[29] Iqbal, S. A., Mativenga, P. T., & Sheikh, M. A. (2007). Characterization of machining of AISI 1045 steel over a wide range of cutting speeds. Part 1: Investigation of contact phenomena. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(5), 909-916. https://doi.org/10.1243/09544054je m796
[30] Iqbal, S. A., Mativenga, P. T., & Sheikh, M. A. (2008). Contact length prediction: mathematical models and effect of friction schemes on FEM simulation for conventional to HSM of AISI 1045 steel. International Journal of Machining and Machinability of Materials, 3(1-2), 18-33. https://doi.org/10.1504/ijmmm.2008.017622
[31] Araújo, R. P., Rolim, T. L., Oliveira, C. A., Moura, A. E., & Silva, J. C. A. (2019). Analysis of the surface roughness and cutting tool wear using a vapor compression assisted cooling system to cool the cutting fluid in turning operation. Journal of Manufacturing Processes, 44, 38-46. https://doi.org/10.1016/j.jmapro.2019.05.040
[32] Chetan, Ghosh, S., & Venkateswara Rao, P. (2015). Application of sustainable techniques in metal cutting for enhanced machinability: a review. Journal of Cleaner Production, 100, 17-34. https://doi.org/10.1016/j.jclepro.2015.03.039