حذف نیکل از پساب‌های صنعتی با استفاده از روش الکتروکواگولاسیون

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 عضو هیأت علمی، گروه مهندسی شیمی، نفت و گاز، دانشگاه فنی و حرفه‌ای، تهران، ایران.

2 دانش‌آموخته کارشناسی ارشد، گروه مهندسی شیمی، نفت و گاز، دانشگاه فنی و حرفه‌ای، تهران، ایران.

چکیده

فرایند انعقاد الکتروکواگولاسیون از لحاظ اقتصادی و زیست­محیطی، انتخابی مناسب برای سیستم­های تصفیه آب و پساب است. در این مطالعه از یک واحد الکتروکواگولاسیون در مقیاس آزمایشگاهی به حجم تقریبی 2/1 لیتر، مجهز به الکترودهایی از جنس آهن و آلومینیوم به ابعاد 1 50 120 میلی­متر به‌منظور حذف نیکل استفاده شد. تأثیر جنس و فاصله الکترودها، غلظت اولیه، ولتاژ جریان، و pH محیط بر راندمان حذف نیکل و همچنین سینتیک واکنش بررسی شد. مقادیر مصرف انرژی و الکترود نیز برای جفت الکترودهای مذکور در شدت جریان­های مختلف به‌دست آمد. نتایج کار نشان داد که با استفاده از چینش­های مختلف الکترودهای آهن و آلومینیوم، راندمان حذف نیکل بین 7/93 تا 1/98 درصد توسط فرایند الکتروکواگولاسیون در ولتاژ جریان 20 ولت و زمان تماس 60 دقیقه به­دست می­آید. راندمان حذف 7/93 درصد برای الکترود Fe(+)/Al(-) با فاصله cm 1 پس از 60 دقیقه در 20ولت، 7 pH و غلظت اولیه mg/l 250 حاصل شد. نتایج این مطالعه حاکی از آن است که راندمان حذف با افزایش ولتاژ، pH و غلظت اولیه افزایش می­یابد. با افزایش شدت جریان نیز میزان انرژی مصرفی افزایش یافت و برای جفت الکترودهای آهنی کمتر از سایر حالات به­دست آمد. میزان الکترود مصرفی در این بازه جریان برای آندهای آهن و آلومینیوم به‌ترتیب kg/m3 31/1 – 87/0 و kg/m3 45/0 – 28/0 به­دست آمد. همچنین پس از بررسی سینتیک واکنش نشان داده شد که مدل واکنش درجه اول تطابق خوبی با داده­های تجربی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Nickel Removal from Industrial Wastewater Using Electrocoagulation Process

نویسندگان [English]

  • Zahra Karimidavani 1
  • Mohsen Moshtaghi 2
1 Faculty Member, Department of Chemical, Petroleum and Gas Engineering. Technical and Vocational University (TVU), Tehran, Iran.
2 M.S. Graduate, Department of Chemical, Petroleum and Gas Engineering. Technical and Vocational University (TVU), Tehran, Iran.
چکیده [English]

Electrocoagulation (EC) process is an economical and environmental option for water and wastewater treatment systems. In the present study, a laboratory-scale electrocoagulation unit with a volume of 1.2 liters, equipped with iron and aluminum electrodes with dimensions of 1×50×120 mm, was used to remove nickel. Influence of the electrode type and distance, initial concentration, voltage, and pH on the nickel removal efficiency were studied in addition to reaction kinetics. Energy and electrode consumptions of these mentioned arrangements were obtained for different current intensities. The results demonstrated that the Ni removal efficiency changed from 93.7% to 98.1% by electrocoagulation using different arrangements of iron and aluminum electrodes at 20 V and 60 min. EC with an Fe(+)/Al(-) electrode pair after 60 min was able to achieve a 93.7% removal efficiency at 20 V, pH 7, and 250 mg/l initial concentration. The present study demonstrated that nickel removal increased with increasing voltage, pH and initial concentration. The increase in current intensity led to an increase in the energy consumption, which was obtained less for the pair of iron electrodes than other arrangements. Corresponding electrode consumptions of iron and aluminum anodes were determined as 0.87-1.31 and 0.28-0.45 kg/m3, respectively. In addition, the first-order model demonstrated an acceptable agreement with the experimental data. 

کلیدواژه‌ها [English]

  • Heavy meta
  • Wastewater
  • Removal efficiency
  • Nickel
  • Electrocoagulation
[1] Holtappels, D., Fortuna, K., Lavigne, R., & Wagemans, J. (2021). The future of phage biocontrol in integrated plant protection for sustainable crop production. Current Opinion in Biotechnology, 68, 60-71. https://doi.org/10.1016/j.copbio.2020.08.016
[2] Altaf, M., Yamin, N., Muhammad, G., Raza, M. A., Shahid, M., & Ashraf, R. S. (2021). Electroanalytical Techniques for the Remediation of Heavy Metals from Wastewater. In Inamuddin, M. I. Ahamed, & E. Lichtfouse (Eds.), Water Pollution and Remediation: Heavy Metals. Springer International Publishing. https://doi.org/10.1007/978-3-030-52 421-0_14
[3] Wang, Z., Xue, J., Li, Y., Shen, Q., Li, Q., Zhang, X., Liu, X., & Jia, H. (2022). Robust Fe2+-doped nickel-iron layered double hydroxide electrode for electrocatalytic reduction of hexavalent chromium by pulsed potential method. Journal of Materials Science & Technology, 110, 73-83. https://doi.org/10.1016/j.jmst.2021.08.086
[4] Boroon, S. (2009). Heavy metal adsorption using functionalized carbon nanotubes [Master, Tehran University]. Iran.
[5] Mobasherpour, I., Salahi, E., & Ebrahimi, M. (2012). Removal of divalent nickel cations from aqueous solution by multi-walled carbon nano tubes: equilibrium and kinetic processes. Research on Chemical Intermediates, 38(9), 2205-2222. https://doi.org/1 0.1007/s11164-012-0537-6
[6] Yang, S., Li, J., Shao, D., Hu, J., & Wang, X. (2009). Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: Effect of contact time, pH, foreign ions and PAA. Journal of Hazardous Materials, 166(1), 109-116. https://doi.org/10.1016/j.jhazmat .2008.11.003
[7] United States Environmental Protection Agency. (2018). 2018 Edition of the Drinking Water Standards and Health Advisories Tables (EPA 822-F-18-001). USEPA. https://www.ep a.gov/system/files/documents/2022-01/dwtable2018.pdf
[8] World Health Organization. (2011). Guidelines for Drinking-water Quality (4 ed.). World Health Organization https://apps.who.int/iris/bitstream/handle/10665/44584/97892 41548151_eng.pdf
[9] Goodarzi, J. (2012). Investigation of the removal possibility of chromium, nickel, zinc heavy metals from electroplating industries wastewater by electro-coagulation method [Master, Islamic Azad University Science and Research Branch of Tehran]. Iran.
[10] Fakharzadeh, M. (2021). Removal of Zinc from Wastewater Using Green Pea Pods as Bio-adsorbent. Karafan Quarterly Scientific Journal, 18(1), 223-235. https://doi.org /10.48301/kssa.2021.131059
[11] Houshmand, F., & Nazari, M. (2022). Removal of trace amounts of heavy metals using silica aerogel nanocomposite with ionic liquid and graphene oxide: Optimization By Response Surface Methodology. Karafan Quarterly Scientific Journal, -(-), -. ht tps://doi.org/10.48301/kssa.2022.324646.1944
[12] Rajoria, S., Vashishtha, M., & Sangal, V. K. (2021). Review on the treatment of electroplating industry wastewater by electrochemical methods. Materials Today: Proceedings, 47, 1472-1479. https://doi.org/10.1016/j.matpr.2021.04.165
[13] Alwan, G. (2012). Simulation and Optimization of a Continuous Biochemical Reactor. Journal of Chemical Engineering & Process Technology, 3(6), 1-7. https://doi.org/1 0.4172/2157-7048.1000142
[14] Costa, J. M., Costa, J. G. D. R. D., & Almeida Neto, A. F. D. (2022). Techniques of nickel(II) removal from electroplating industry wastewater: Overview and trends. Journal of Water Process Engineering, 46, 102593. https://doi.org/10.1016/j.jwpe.2022.102593
[15] Moosavirad, S. M., & Hasanzadeh-Sablouei, A. (2020). Removal of cadmium from the leaching solution using electrocoagulation. Environment and Water Engineering, 6(4), 415-429. https://doi.org/10.22034/jewe.2020.238951.1388
[16] Den, W., & Huang, C. (2006). Electrocoagulation of Silica Nanoparticles in Wafer Polishing Wastewater by a Multichannel Flow Reactor: A Kinetic Study. Journal of Environmental Engineering, 132(12), 1651-1658. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:1 2(1651)
[17] Pearse, M. J. (2003). Historical use and future development of chemicals for solid–liquid separation in the mineral processing industry. Minerals Engineering, 16(2), 103-108. ht tps://doi.org/10.1016/S0892-6875(02)00288-1
[18] Nasrullah, M., Singh, L., & Wahid, Z. (2012). Treatment of sewage by electrocoagulation and the effect of high current density. Energy Environ Eng, 1(1), 27-31. https://www.res earchgate.net/publication/285023284_Treatment_of_sewage_by_electrocoagulation_and_the_effect_of_high_current_density
[19] Mahvi, A. H., Bazrafshan, E., Mesdaghinia, A. R., Naseri, S., & Vaezi, F. (2007). Chromium (Cr+6) Removal from Aqueous Environments by Electrocoagulation Process Using Aluminum Electrodes. Journal of Water and Wastewater, 18(2), 28-34. https://www.w wjournal.ir/article_2429.html?lang=en
[20] Escobar, C., Soto-Salazar, C., & Inés Toral, M. (2006). Optimization of the electrocoagulation process for the removal of copper, lead and cadmium in natural waters and simulated wastewater. Journal of Environmental Management, 81(4), 384-391. https://doi.org/10.10 16/j.jenvman.2005.11.012
[21] Zhao, J., Liu, J., Li, N., Wang, W., Nan, J., Zhao, Z., & Cui, F. (2016). Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe3O4-MnO2: Adsorption behavior and process study. Chemical Engineering Journal, 304, 737-746. https://doi.org/10.1016/j.cej.2016.07.003