برنامه‌ریزی چندهدفه تولیدات پراکنده در شبکه توزیع انرژی الکتریکی با درنظرگرفتن منافع سرمایه‌گذار منابع و بهره‌بردار شبکه

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 دانش آموخته کارشناسی ارشد، دانشگاه آزاد اسلامی واحد تهران جنوب، تهران، ایران.

2 استادیار، گروه مهندسی برق، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران.

3 استادیار، گروه مهندسی برق، دانشگاه فنی و حرفه ای، تهران، ایران.

چکیده

با توجه به روند روبه‌رشد مصرف انرژی در جهان، شبکه­های توزیع به دنبال راهکارهای نوین تأمین انرژی موردنیاز با فراهم بودن شرایط فنی و اقتصادی مطلوب هستند. در این تحقیق، برنامه‌ریزی منابع تولید پراکنده در شبکه توزیع با توجه به منافع مالک منابع و بهره‌بردار شبکه درنظر گرفته شده است. تابع هدف به شکلی طراحی شده است که منافع صاحبان شبکه توزیع ازجمله بهبود پارامترهای شبکه و مالکان منابع تولید پراکنده که شامل بیشترین سود ممکن حاصل از فروش انرژی است را تأمین کند. تابع هدف از ترکیب چند تابع خطی درنظر گرفته شده است. به علت نسبت مقاومت به راکتانس بالا در شبکه­های شعاعی از پخش بار جاروب پیشرو پسرو استفاده شده است. قیود لازم برای شبکه با شاخص­های کیفی به‌صورت قیود برابری و نابرابری درنظر گرفته می­شود. برای تعیین محل نصب منابع تولید پراکنده بر روی باس­ها، از شاخص حساسیت بهره گرفته شده است. همچنین برای رسیدن به پاسخ نهایی تابع هدف از الگوریتم بهینه‌سازی یادگیری معلم و مقایسه آن با الگوریتم ازدحام ذرات استفاده شده است. برای ارزیابی نتایج روش پیشنهادی از شبکه شعاعی 37 باسه استاندارد استفاده شده است. نتایج حاصل از شبیه‌سازی، نشان‌دهنده بهبود وضعیت شبکه و افزایش سود مالکان تولیدات پراکنده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Multi-Objective Planning of Distributed Generation in the Electricity Network Considering the Interests of the Resource Investor and Network Operator

نویسندگان [English]

  • Amirali Hosseini 1
  • Mahdi Hedayati 2
  • Amir Khaledian 3
1 Graduate student, Islamic Azad University, South Tehran Branch, Tehran, Iran.
2 Assistant Professor, Department of Electrical Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran.
3 Assistant Professor, Department of Electrical Engineering, Technical and Vocational University, Tehran, Iran.
چکیده [English]

Due to the fast growth of energy consumption globally, distribution networks are seeking a solution to supply the required energy, considering the technical and economic conditions. In this research, distributed resources were planned in the distribution network, taking into account the interests of both the owner of the resources and the operation of the network. The objective function was designed to serve the interests of the owners of the distribution network, including the improvement of network parameters and the owners of distributed generation resources, which included the maximum possible profit from the sale of energy. The objective function was considered to be a combination of several linear functions. Due to the high reactance ratio in radial networks, forward-backward sweep load flow was used. Necessary constraints for the network with quality indicators were considered as equality and inequality constraints. For the location of distributed generators on the buses, the sensitivity factor was used and to achieve the final response of the objective function, the teaching–learning-based optimization (TLBO) algorithm was used and compared with particle swarm optimization. A standard 37-bus radial network was considered to evaluate the results of the proposed method. The simulation results show an improvement in power quality of the network and an increase in the profits of the owners of distributed generators.

کلیدواژه‌ها [English]

  • Distributed generation
  • Network operator
  • Voltage profile
  • Loss reduction
  • Resource location
[1] Askari, F. (2021). Assessment of the Impact of Distributed Generation and Distribution Network Faults on Generation Reliability Indices. Karafan Quarterly Scientific Journal, 18(3), 13-33. https://doi.org/10.48301/kssa.2021.277262.1427
[2] Sabzevari, K. (2020). Provide a simple model of the Comprehensive Electric Power Controller. Karafan Quarterly Scientific Journal, 17(1), 13-26. https://doi.org/10.48301/kssa.2020.11 2753
[3] Pham, T. D., Nguyen, T. T., & Dinh, B. H. (2021). Find optimal capacity and location of distributed generation units in radial distribution networks by using enhanced coyote optimization algorithm. Neural Computing and Applications, 33(9), 4343-4371. htt ps://doi.org/10.1007/s00521-020-05239-1
[4] Sambaiah, K. S., & Jayabarathi, T. (2021). Optimal reconfiguration and renewable distributed generation allocation in electric distribution systems. International Journal of Ambient Energy, 42(9), 1018-1031. https://doi.org/10.1080/01430750.2019.1583604
[5] Akkas, Ö. P., & Ertugrul, C. (2020). Bidding and Operating Planning of a Virtual Power Plant in a Day-Ahead Market. International Journal of Engineering Research and Development, 12(3), 1-10. https://doi.org/10.29137/umagd.842476
[6] Avar, A., & Sheikh-El-Eslami, M. K. (2021). Optimal DG placement in power markets from DG Owners’ perspective considering the impact of transmission costs. Electric Power Systems Research, 196(9), 107218. https://doi.org/10.1016/j.epsr.2021.107218
[7] Aliakbari, M., Maghouli, P., & Aalami, H. A. (2018). Reliability constrained unit commitment considering the effect of DG and DR program. International Journal of Electrical and Computer Engineering, 8(4), 1985-1996. https://doi.org/10.11591/ijece.v8i4.pp1985-1996
[8] Nazari, M. H., Bagheri Sanjareh, M., Khodadadi, A., Torkashvand, M., & Hosseinian, S. H. (2021). An economy-oriented DG-based scheme for reliability improvement and loss reduction of active distribution network based on game-theoretic sharing strategy. Sustainable Energy, Grids and Networks, 27, 100514. https://doi.org/10.1016/j.segan.20 21.100514
[9] Yahaya, A. A., AlMuhaini, M., & Heydt, G. T. (2020). Optimal design of hybrid DG systems for microgrid reliability enhancement. Institution of Engineering and Technology generation, transmission & distribution, 14(5), 816-823. https://doi.org/10.1049/iet -gtd.2019.0277
[10] Vatani, M., Solati Alkaran, D., Sanjari, M. J., & Gharehpetian, G. B. (2016). Multiple distributed generation units allocation in distribution network for loss reduction based on a combination of analytical and genetic algorithm methods. Institution of Engineering and Technology  Generation, Transmission & Distribution, 10(1), 66-72. https://doi.org/ 10.1049/iet-gtd.2015.0041
[11] Rahmani-Andebili, M. (2015). Distributed generation placement planning modeling feeder’s failure rate and customer’s load type. IEEE Transactions on Industrial Electronics, 63(3), 1598-1606. https://doi.org/10.1109/TIE.2015.2498902
[12] Nguyen, T. T., Truong, A. V., & Phung, T. A. (2016). A novel method based on adaptive cuckoo search for optimal network reconfiguration and distributed generation allocation in distribution network. International Journal of Electrical Power & Energy Systems, 78, 801-815. https://doi.org/10.1016/j.ijepes.2015.12.030
[13] Colmenar-Santos, A., Reino-Rio, C., Borge-Diez, D., & Collado-Fernández, E. (2016). Distributed generation: A review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks. Renewable and Sustainable Energy Reviews, 59, 1130-1148. https://doi.org/10.1016/j.rser.2016.01. 023
[14] Ehsan, A., & Yang, Q. (2018). Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques. Applied Energy, 210, 44-59. https://doi.org/10.1016/j.apenergy.2017.10.106
[15] Mehigan, L., Deane, J. P., Gallachóir, B. P. Ó., & Bertsch, V. (2018). A review of the role of distributed generation (DG) in future electricity systems. Energy, 163, 822-836. https://doi.org/10.1016/j.energy.2018.08.022
[16] Rezaee Jordehi, A. (2016). Allocation of distributed generation units in electric power systems: A review. Renewable and Sustainable Energy Reviews, 56, 893-905. https: //doi.org/10.1016/j.rser.2015.11.086
[17] Singh, B., & Sharma, J. (2017). A review on distributed generation planning. Renewable and Sustainable Energy Reviews, 76, 529-544. https://doi.org/10.1016/j.rser.2017.0 3.034
[18] Arabali, A., Ghofrani, M., Etezadi-Amoli, M., Fadali, M. S., & Moeini-Aghtaie, M. (2014). A Multi-Objective Transmission Expansion Planning Framework in Deregulated Power Systems With Wind Generation. IEEE Transactions on Power Systems, 29(6), 3003-3011. https://doi.org/10.1109/TPWRS.2014.2316529
[19] Gampa, S. R., & Das, D. (2019). Simultaneous optimal allocation and sizing of distributed generations and shunt capacitors in distribution networks using fuzzy GA methodology. Journal of Electrical Systems and Information Technology, 6(1), 1-18. https://doi.org/10 .1186/s43067-019-0003-2
[20] Karimizadeh, K., Soleymani, S., & Faghihi, F. (2019). Microgrid utilization by optimal allocation of DG units: Game theory coalition formulation strategy and uncertainty in renewable energy resources. Journal of Renewable and Sustainable Energy, 11(2), 025505. https://doi.org/10.1063/1.5078720
[21] Nagaballi, S., & Kale, V. S. (2020). Pareto optimality and game theory approach for optimal deployment of DG in radial distribution system to improve techno-economic benefits. Applied Soft Computing, 92, 106234. https://doi.org/10.1016/j.asoc.2020.1062 34
[22] Samala, R. K., & Kotapuri, M. R. (2020). Optimal allocation of distributed generations using hybrid technique with fuzzy logic controller radial distribution system. Springer nature applied sciences, 2(2), 1-14. https://doi.org/10.1007/s42452-020-1957-3
[23] Levin, T., & Botterud, A. (2015). Capacity Adequacy and Revenue Sufficiency in Electricity Markets With Wind Power. IEEE Transactions on Power Systems, 30(3), 1644-1653. https://doi.org/10.1109/TPWRS.2015.2403714
[24] Gözel, T., & Hocaoglu, M. H. (2009). An analytical method for the sizing and siting of distributed generators in radial systems. Electric Power Systems Research, 79(6), 912-918. https://doi.org/10.1016/j.epsr.2008.12.007
[25] Gharibi, M., & Askarzadeh, A. (2019). Size and power exchange optimization of a grid-connected diesel generator-photovoltaic-fuel cell hybrid energy system considering reliability, cost and renewability. International Journal of Hydrogen Energy, 44(47), 25428-25441. https://doi.org/10.1016/j.ijhydene.2019.08.007
[26] Jamshidi, M., & Askarzadeh, A. (2019). Techno-economic analysis and size optimization of an off-grid hybrid photovoltaic, fuel cell and diesel generator system. Sustainable Cities and Society, 44, 310-320. https://doi.org/10.1016/j.scs.2018.10.021
[27] Jayasree, M. S., Sreejaya, P., & Bindu, G. R. (2019). Multi-Objective Metaheuristic Algorithm for Optimal Distributed Generator Placement and Profit Analysis. Technology and Economics of Smart Grids and Sustainable Energy, 4(1), 1-10. https://doi.org/1 0.1007/s40866-019-0067-z
[28] Zhang, L., Tang, W., Liu, Y., & Lv, T. (2015). Multiobjective optimization and decision-making for DG planning considering benefits between distribution company and DGs owner. International Journal of Electrical Power & Energy Systems, 73, 465-474. https://doi.org/10.1016/j.ijepes.2015.05.019
[29] Patra, S. B., Mitra, J., & Ranade, S. J. (2005, June 16). Microgrid architecture: a reliability constrained approach. IEEE Power Engineering Society General Meeting, 2005, San Francisco, CA, USA. https://doi.org/10.1109/PES.2005.1489500
[30] Kumar, Y., & Singh, P. K. (2019). A chaotic teaching learning based optimization algorithm for clustering problems. Applied Intelligence, 49(3), 1036-1062. https://doi.org/10.1007/ s10489-018-1301-4
[31] Shukla, A. K., Singh, P., & Vardhan, M. (2020). An adaptive inertia weight teaching-learning-based optimization algorithm and its applications. Applied Mathematical Modelling, 77, 309-326. https://doi.org/10.1016/j.apm.2019.07.046
[32] Xue, R., & Wu, Z. (2020). A Survey of Application and Classification on Teaching-Learning-Based Optimization Algorithm. IEEE Access, 8, 1062-1079. https://doi.or g/10.1109/ACCESS.2019.2960388
[33] Fakhar, M. S., Kashif, S. A. R., Liaquat, S., Rasool, A., Padmanaban, S., Iqbal, M. A., Baig, M. A., & Khan, B. (2021). Implementation of APSO and Improved APSO on Non-Cascaded and Cascaded Short Term Hydrothermal Scheduling. IEEE Access, 9, 77784-77797. https://doi.org/10.1109/ACCESS.2021.3083528