الگوریتم ترکیبی بر اساس الگوریتم‌های تکامل تفاضلی، ایمنی بدن و ازدحام ذرات برای انتخاب پارامترهای بهینه در فرزکاری

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 استادیار، دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران.

2 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران.

چکیده

این مقاله با استفاده از درهم‌آمیختن الگوریتم بدن، برای بهینه‌سازی، شیوه‌ای ترکیبی و نوآورانه ارائه‌ کرده ‌است، سپس در مرحله جهش با استفاده از الگوریتم ایمنی بدن از الگوریتم ازدحام ذرات (PSO) برای تعیین مقدار ضریب جهش کمک ‌گرفته‌ است. از این‌رو الگوریتم مذکور با یک روش هم‌تکاملی خود پس از اصلاح، ضریب جهش بهینه را جست‌وجو می‌کند. مدل ارائه‌شده بر روی یک فرایند مطالعاتی فرزکاری آزمایش‌ شده ‌است تا تأثیر آن بر روی بهینه‌سازی پارامترهای فرزکاری مشخص‌ شود. نتایج به‌دست‌آمده با الگوریتم کلونی مورچه­ها، ایمنی بدن، الگوریتم ایمنی بدن ترکیبی، الگوریتم ژنتیک، روش ترکیبی تفاضل تکاملی با ایمنی بدن و مقادیر پیشنهادی هندبوک‌های ماشین‌کاری مقایسه ‌شده‌ است. با توجه به این مقایسه میزان بهبود پاسخ­های ارائه ‌شده نسبت به روش‌های الگوریتم کلونی مورچه­ها 7/5٪، ایمنی بدن 5/4٪، الگوریتم ایمنی بدن ترکیبی 3٪، الگوریتم ژنتیک 5/8٪، روش ترکیبی تفاضل تکاملی با ایمنی بدن 2٪ و مقادیر پیشنهادی هندبوک‌های ماشین‌کاری 300٪ بوده ‌است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Hybrid Algorithm Based on Differential Evolution, Artificial Immune System and Particle Swarm Algorithms for Selection of Optimal Machining Parameters in Milling Operations

نویسندگان [English]

  • Valiollah Panahizadeh 1
  • Hossein Abdolahzadeh 2
1 Assistant Professor, Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran.
2 PhD Student, Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran.
چکیده [English]

This paper presents a combination of innovative methods for optimization using the integration of the evolutionary difference algorithm (DE) and the recipient's version of the immune system algorithm. In this paper, at the mutation stage, the particle swarm algorithm (PSO) was used to determine the value of the mutation coefficient using the immune system algorithm. Therefore, the algorithm modified its evolutionary method and searched for the optimal jump coefficient. The proposed model was tested on milling operations to determine its effect on the optimization of milling parameters. The results of the hybrid approach for the case study were compared with those of ant colony algorithm, body immunity, hybrid immune algorithm, genetic algorithm, HDRE approach, and the proposed values ​​of machining handbooks. According to this comparison, the development ratio between the proposed algorithm and other approaches were as follows: ant colony algorithm was 5.7%, immune algorithm was 4.5%, hybrid immune algorithm was 3%, genetic algorithm was 8.5%, HDRE approach was 2% and handbook recommendation was 300%.

کلیدواژه‌ها [English]

  • Immune system Differential evolution Particle swarm algorithm Milling Co
  • evolutionary algorithm
[1] Rahmatinejad, B., Abbasgholipour, M., & Mohammadi Alasti, B. (2021). Redesign of engine radiator based on number of optimal fans using a genetic algorithm. Karafan Quarterly Scientific Journal, 17(4), 97-115. https://doi.org/10.48301/kssa.2021.12 8398
[2] Yildiz, A. R. (2013). Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations. Applied Soft Computing, 13(3), 1433-1439. https: //doi.org/10.1016/j.asoc.2012.01.012
[3] Taylor, F. W. (1906). On the art of cutting metals (3 ed.). American Society of Mechanical Engineers. https://www.amazon.com/art-cutting-metals-F-Taylor/dp/B0000EEXDY
[4] Wang, Z. G., Rahman, M., Wong, Y. S., & Sun, J. (2005). Optimization of multi-pass milling using parallel genetic algorithm and parallel genetic simulated annealing. International Journal of Machine Tools and Manufacture, 45(15), 1726-1734. https://doi.org/10.1016/j .ijmachtools.2005.03.009
[5] Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Massachusetts Institute of Technology press. https://ieeexplore.ieee.org/book/6267401
[6] Leo Kumar, S. P. (2018). Experimental investigations and empirical modeling for optimization of surface roughness and machining time parameters in micro end milling using Genetic Algorithm. Measurement, 124, 386-394. https://doi.org/10.1016/j.measurement.2018.04. 056
[7] Wang, W., Tian, G., Chen, M., Tao, F., Zhang, C., Ai-Ahmari, A., Li, Z., & Jiang, Z. (2020). Dual-objective program and improved artificial bee colony for the optimization of energy-conscious milling parameters subject to multiple constraints. Journal of Cleaner Production, 245(1-3), 118714. https://doi.org/10.1016/j.jclepro.2019.118714
[8] Zhou, J., Ren, J., & Yao, C. (2017). Multi-objective optimization of multi-axis ball-end milling Inconel 718 via grey relational analysis coupled with RBF neural network and PSO algorithm. Measurement, 102, 271-285. https://doi.org/10.1016/j.measur ement.2017.01.057
[9] Vishnu Vardhan, M., Sankaraiah, G., Yohan, M., & Jeevan Rao, H. (2017). Optimization of Parameters in CNC milling of P20 steel using Response Surface methodology and Taguchi Method. Materials Today: Proceedings, 4(8), 9163-9169. https://doi.org/10.1016/j.matpr.2 017.07.273
[10] Aslantas, K., Ekici, E., & Çiçek, A. (2018). Optimization of process parameters for micro milling of Ti-6Al-4V alloy using Taguchi-based gray relational analysis. Measurement, 128, 419-427. https://doi.org/10.1016/j.measurement.2018.06.066
[11] Zhou, L-r., Li, J., Fangyi, L., Mendis, G., & Sutherland, J. (2018). Optimization Parameters for Energy Efficiency in End milling. Procedia CIRP, 69, 312-317. https://doi.org/10.101 6/j.procir.2017.12.005
[12] Tlhabadira, I., Daniyan, I., Masu, L., & VanStaden, L. R. (2019). Process Design and Optimization of Surface Roughness during M200 TS Milling Process using the Taguchi Method. Procedia CIRP, 84, 868-873. https://doi.org/10.1016/j.procir.201 9.03.200
[13] Daniyan, I. A., Tlhabadira, I., Daramola, O. O., & Mpofu, K. (2019). Design and Optimization of Machining Parameters for Effective AISI P20 Removal Rate during Milling Operation. Procedia CIRP, 84, 861-867. https://doi.org/10.1016/j.procir.2019.04.3 01
[14] Mundada, V., & Kumar Reddy Narala, S. (2018). Optimization of Milling Operations Using Artificial Neural Networks (ANN) and Simulated Annealing Algorithm (SAA). Materials Today: Proceedings, 5(2), 4971-4985. https://doi.org/10.1016/j.matpr.2017.12. 075
[15] Sharma, A., Islam, A., Sharma, K., & Singh, P. K. (2021). Optimization techniques to optimize the milling operation with different parameters for composite of AA 3105. Materials Today: Proceedings, 43, 224-230. https://doi.org/10.1016/j.matpr.2020.11.649
[16] Aliakbari, K., Saberi, M. R., & Andalib, M. (2021). Applying Taguchi method to optimize EDM parameters on Inconel 718 super alloy. Karafan Quarterly Scientific Journal, 17(4), 163-180. https://doi.org/10.48301/kssa.2021.128402
[17] Baskar, N., Asokan, P., Prabhaharan, G., & Saravanan, R. (2005). Optimization of Machining Parameters for Milling Operations Using Non-conventional Methods. The International Journal of Advanced Manufacturing Technology, 25(11), 1078-1088. https://doi.org/10.1 007/s00170-003-1939-9
[18] Rıza Yıldız, A. (2009). A novel hybrid immune algorithm for global optimization in design and manufacturing. Robotics and Computer-Integrated Manufacturing, 25(2), 261-270. https://doi.org/10.1016/j.rcim.2007.08.002
[19] Tolouei-Rad, M., & Bidhendi, I. M. (1997). On the optimization of machining parameters for milling operations. International Journal of Machine Tools and Manufacture, 37(1), 1-16. https://doi.org/10.1016/S0890-6955(96)00044-2
[20] Machinability Data Center Cincinnati Ohio. (1980). Machining Data Handbook (3 ed.). TechSolve. https://www.standardsmedia.com/Machining-Data-Handbook-3rd-Edit ion-2---Volume-S et-3137-book.html
[21] Lee, Y., Resiga, A., Yi, S., & Wern, C. (2020). The Optimization of Machining Parameters for Milling Operations by Using the Nelder–Mead Simplex Method. Journal of Manufacturing and Materials Processing, 4(3), ‍1-22. https://www.mdpi.com/2504-4494/4/3/66
[22] Storn, R., & Price, K. (1997). Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4), 341-359. https://doi.org/10.1023/A:1008202821328
[23] De Castro, L. N., & Von Zuben, F. J. (1999). Artificial immune systems: Part I–basic theory and applications. Universidade Estadual de Campinas, Dezembro de, Technical Report 210. https://www.dca.fee.unicamp.br/~vonzuben/research/lnunes_dout/relatorios/ rtdca0199.pdf
[24] Mahdavinejad, R. A., Khani, N., & Fakhrabadi, M. M. S. (2012). Optimization of milling parameters using artificial neural network and artificial immune system. Journal of Mechanical Science and Technology, 26(12), 4097-4104. https://doi.org/10.1007/s12206-012-0882-9
[25] He, Q., & Wang, L. (2007). An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence, 20(1), 89-99. https://doi.org/10.1016/j.engappai.2006.03.003