بررسی بعضی خواص مهم حرارتی مواد تغییرفازدهنده ارتقا داده شده با مواد نانوساختار

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 دکتری، گروه مهندسی مکانیک، دانشگاه فنی و حرفه‌ای، تهران، ایران.

2 دانشجوی دکتری، گروه مهندسی برق، دانشگاه فنی و حرفه‌ای، تهران، ایران.

3 استادیار، گروه تولیدات گیاهی، دانشکده کشاورزی شیروان، دانشگاه بجنورد، بجنورد، ایران.

4 دکتری، گروه مهندسی صنایع، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

چکیده

یکی از کاربردی‌ترین روش‌ها برای ذخیره‌سازی انرژی گرمایی، استفاده از مواد تغییر فازدهنده (PCMs) است. در این پژوهش، تأثیر افزودن مواد نانوساختار بر برخی خواص مهم ترموفیزیکی PCMs شامل آنتالپی ذوب و ضریب نفوذ حرارتی بررسی شده است. برای این منظور از پارافین به‌عنوان PCM و از نانوذرات سیلیکا و اکسیدمس، با هدف ارتقای خواص حرارتی آن استفاده گردید. برای تولید نمونه‌ها، دقیق‌ترین روش‌ها به‌کار گرفته شد و آنالیز ریزساختارشناسی آن‌ها با میکروسکوپ الکترونی روبشی نشر میدانی (FESEM) انجام شد. آنتالپی ذوب با استفاده از دستگاه گرماسنج روبشی تفاضلی (DSC) و ضریب نفوذ حرارتی با استفاده از دستگاه فلاش لیزر (LFA) اندازه‌گیری شدند. آزمایش‌ها با آزمون فاکتوریل در قالب طرح کاملاً تصادفی با سه عامل اصلی درصد وزنی نانوذره (در 3 سطح)، نوع نانوذره (در 2 سطح) و اندازه قطر متوسط نانوذره (در 3 سطح) و نیز پارافین خالص به‌عنوان نمونه‌ شاهد، با 3 تکرار انجام شد. نتایج نشان‌دهنده‌ کاهش آنتالپی ذوب نانوکامپوزیت با افزایش درصد وزنی نانوذره است، درحالی‌که اندازه نانوذره، تأثیر معناداری بر آن ندارد. همچنین تأثیر عوامل اندازه و نوع نانوذره در سطح 1 درصد بر ضریب نفوذ حرارتی Ne-PCMs معنی‌دار شده است. از آنجا که پارافین، ماهیت غیرقطبی دارد، نانوذره سیلیکا با آن واکنش بهتری داده است و خواص ترموفیزیکی نانوکامپوزیت ارتقا داده شده با نانوذره سیلیکا، به‌مراتب بهتر از اکسیدمس مشاهده شده است؛ می‌توان نتیجه گرفت که این نانوذره برای بهبود خواص ذخیره‌سازی انرژی حرارتی در PCMs مؤثرتر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of Some Important Thermal Properties of Phase Change Materials Upgraded with Nanomaterials

نویسندگان [English]

  • Mostafa Jafarian 1
  • Masoud Ghazipour Shirvan 2
  • Mahdi Babaeian 3
  • Mostafa Izadi 4
1 PhD, Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran.
2 PhD Student, Department of Electrical Engineering, Technical and Vocational University (TVU), Tehran, Iran.
3 Assistant Professor, Department of Crop Production, Faculty of Shirvan's Agriculture, University of Bojnord, Bojnord, Iran.
4 PhD, Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
چکیده [English]

One of the most practical methods for thermal energy storage is the use of phase change materials (PCMs). In this study, the effect of nanomaterial loading on some important thermophysical properties of PCMs including melting enthalpy and thermal diffusivity coefficient was investigated. Silica (SiO2) and copper oxide nanoparticles (CuO) were incorporated into Paraffin wax as a PCM to enhance its thermal properties. To produce the samples, the most accurate methods were used and their morphology was studied by field emission scanning electron microscopy (FESEM). Melting enthalpy and thermal diffusivity were measured by a differential scanning calorimeter (DSC) and a laser flash apparatus (LFA), respectively. The experiments were performed in a factorial arrangement in a completely randomized design with three main factors including the weight percentage of nanoparticles (three levels), the type of nanoparticle (two levels), and the size of the nanoparticles (three levels), and pure Paraffin wax as a control sample with three replications. The results showed that the melting enthalpy of the nanocomposite decreased with the increasing weight percentage of nanoparticles while the size of the nanoparticles displayed no significant effect. In addition, the size and type of nanoparticles affected thermal diffusivity coefficient of Ne-PCMs significantly (p<0.01). Since the enhancement of thermophysical properties of the nanocomposites containing silica nanoparticles was better than copper oxide, it can be concluded that this nanoparticle is more effective in improving the thermal energy storage properties of PCMs.

کلیدواژه‌ها [English]

  • Renewable energies
  • Phase change materials
  • Melting enthalpy
  • Thermal diffusivity coefficient
  • Nanotechnology
[1] Afsahi, M. M., & Cheraghi Sepahvand, T. (2018). T-history: A simple and cost effective method for determining thermal properties of phase change materials (PCMs). Karafan Quarterly Scientific Journal, 15(44), 13-26. https://karafan.tvu.ac.ir/ article_100519.html?lang=en
[2] Mohammadi, O., Shafii, M. B., Rezaee Shirin‐Abadi, A., Heydarian, R., & Ahmadi, M. H. (2021). The impacts of utilizing nano‐encapsulated PCM along with RGO nanosheets in a pulsating heat pipe, a comparative study. International Journal of Energy Research, 45(13), 19481-19499. https://doi.org/10.1002/er.7056
[3] Nakhchi, M. E., Hatami, M., & Rahmati, M. (2021). A numerical study on the effects of nanoparticles and stair fins on performance improvement of phase change thermal energy storages. Energy, 215, 119112. https://doi.org/10.1016/j.energy.2020.119112
[4] Santosh, R., Kumaresan, G., Paranthaman, V., Swaminathan, M. R., & Velraj, R. (2021). Comparative investigation on heat transfer enhancement of surface‐roughened and nano‐dispersed phase change material for thermal energy storage. International Journal of Energy Research, 45(11), 15992-16005. https://doi.org/10.1002/er.6828
[5] Syah, R., Davarpanah, A., Elveny, M., & Ramdan, D. (2022). Natural convection of water and nano‐emulsion phase change material inside a square enclosure to cool the electronic components. International Journal of Energy Research, 46(3), 2403-2417. https://doi.org/10.1002/er.7316
[6] Zhao, C. Y., Tao, Y. B., & Yu, Y. S. (2020). Molecular dynamics simulation of nanoparticle effect on melting enthalpy of paraffin phase change material. International Journal of Heat and Mass Transfer, 150, 119382. https://doi.org/10. 1016/j.ijheatmasstransfer.2020.119382
[7] Ke, H., Pang, Z., Xu, Y., Chen, X., Fu, J., Cai, Y., Huang, F., & Wei, Q. (2014). Graphene oxide improved thermal and mechanical properties of electrospun methyl stearate/polyacrylonitrile form-stable phase change composite nanofibers. Journal of thermal analysis and calorimetry, 117(1), 109-122. https://doi.org/10.1007/s10 973-014-3669-7
[8] Shin, D., & Banerjee, D. (2015). Enhanced thermal properties of SiO2 nanocomposite for solar thermal energy storage applications. International Journal of Heat and Mass Transfer, 84, 898-902. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.100
[9] Myers, P. D., Alam, T. E., Kamal, R., Goswami, D. Y., & Stefanakos, E. (2016). Nitrate salts doped with CuO nanoparticles for thermal energy storage with improved heat transfer. Applied Energy, 165, 225-233. https://doi.org/10.1016/j.apenergy.2015.11.045
[10] Sharma, R. K., Ganesan, P., Tyagi, V. V., Metselaar, H. S. C., & Sandaran, S. C. (2016). Thermal properties and heat storage analysis of palmitic acid-TiO2 composite as nano-enhanced organic phase change material (NEOPCM). Applied Thermal Engineering, 99, 1254-1262. https://doi.org/10.1016/j.applthermaleng.2016.01.130
[11] Colla, L., Fedele, L., Mancin, S., Danza, L., & Manca, O. (2017). Nano-PCMs for enhanced energy storage and passive cooling applications. Applied Thermal Engineering, 110, 584-589. https://doi.org/10.1016/j.applthermaleng.2016.03.161
[12] Narayanan, S. S., Kardam, A., Kumar, V., Bhardwaj, N., Madhwal, D., Shukla, P., Kumar, A., Verma, A., & Jain, V. K. (2017). Development of sunlight-driven eutectic phase change material nanocomposite for applications in solar water heating. Resource-Efficient Technologies, 3(3), 272-279. https://doi.org/10.1016/j.reffit.2016.12.004
[13] Praveen, B., & Suresh, S. (2018). Experimental study on heat transfer performance of neopentyl glycol/CuO composite solid-solid PCM in TES based heat sink. Engineering Science and Technology, an International Journal, 21(5), 1086-1094. https://doi.org/10.1016/j.jestch.2018.07.010
[14] Khan, Z., Khan, Z. A., & Sewell, P. (2019). Heat transfer evaluation of metal oxides based nano-PCMs for latent heat storage system application. International Journal of Heat and Mass Transfer, 144, 118619. https://doi.org/10.1016/j.ijheatmass transfer.2019.118619
[15] Raj, C. R., Suresh, S., Bhavsar, R. R., Kumar Singh, V., & Reddy, S. (2019). Effect of nano-gallium capsules on thermal energy storage characteristics of manganese organometallic SS-PCM. Thermochimica Acta, 680, 178341. https://doi.org/10.10 16/j.tca.2019.178341
[16] Ferfera, R. S., & Madani, B. (2020). Thermal characterization of a heat exchanger equipped with a combined material of phase change material and metallic foams. International Journal of Heat and Mass Transfer, 148, 119162. https://doi.org/10. 1016/j.ijheatmasstransfer.2019.119162
[17] Xiao, X., Zhang, P., & Li, M. (2014). Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage. International Journal of Thermal Sciences, 81, 94-105. https://doi.org/10.1016/j.ijthermalsci.2014.03.006
[18] Warzoha, R. J., Weigand, R. M., & Fleischer, A. S. (2015). Temperature-dependent thermal properties of a paraffin phase change material embedded with herringbone style graphite nanofibers. Applied Energy, 137, 716-725. https://doi.org/10.1016/j. apenergy.2014.03.091
[19] Yang, Y., Luo, J., Song, G., Liu, Y., & Tang, G. (2014). The experimental exploration of nano-Si3N4/paraffin on thermal behavior of phase change materials. Thermochimica Acta, 597, 101-106. https://doi.org/10.1016/j.tca.2014.10.014
[20] Jafarian, M., Baradaran Motie, J., & Azadnia, R. (2021). Investigation of the effect of speed, depth, and type of tillage on soil surface roughness and burial of plant residues in rainfed lands. Karafan Quarterly Scientific Journal. https://doi.org/10. 48301/kssa.2021.280529.1474
[21] Khodadadi, J. M., Fan, L., & Babaei, H. (2013). Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews, 24, 418-444. https://doi.org/10.1016/j.rser.2013.03.031
[22] Lin, Y., Jia, Y., Alva, G., & Fang, G. (2018). Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renewable and Sustainable Energy Reviews, 82, 2730-2742. https://doi.org/10.1016/j.rser.2017.10.002
[23] Leong, K. Y., Abdul Rahman, M. R., & Gurunathan, B. A. (2019). Nano-enhanced phase change materials: A review of thermo-physical properties, applications and challenges. Journal of Energy Storage, 21, 18-31. https://doi.org/10.1016/j.est.20 18.11.008
[24] Rostami, S., Afrand, M., Shahsavar, A., Sheikholeslami, M., Kalbasi, R., Aghakhani, S., Shadloo, M. S., & Oztop, H. F. (2020). A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage. Energy, 211, 118698. https://doi.org/10.1016/j.energy.2020.118698
[25] Manoj Kumar, P., Mylsamy, K., & Saravanakumar, P. T. (2020). Experimental investigations on thermal properties of nano-SiO2/paraffin phase change material (PCM) for solar thermal energy storage applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(19), 2420-2433. https://doi. org/10.1080/15567036.2019.1607942
[26] Yadav, C., & Sahoo, R. R. (2022). Thermal analysis comparison of nano-additive PCM-based engine waste heat recovery thermal storage systems: an experimental study. Journal of thermal analysis and calorimetry, 147(3), 2785-2802. https://doi.org/10. 1007/s10973-021-10611-x
[27] Manirathnam, A. S., Dhanush Manikandan, M. K., Hari Prakash, R., Kamesh Kumar, B., & Deepan Amarnath, M. (2021). Experimental analysis on solar water heater integrated with Nano composite phase change material (SCi and CuO). Materials Today: Proceedings, 37, 232-240. https://doi.org/10.1016/j.matpr.2020.05.093
[28] Zhang, X., Zhu, C., & Fang, G. (2020). Preparation and thermal properties of n-eicosane/nano-SiO2/expanded graphite composite phase-change material for thermal energy storage. Materials Chemistry and Physics, 240, 122178. https://doi. org/10.1016/j.matchemphys.2019.122178
[29] Şahan, N., Fois, M., & Paksoy, H. (2015). Improving thermal conductivity phase change materials—A study of paraffin nanomagnetite composites. Solar Energy Materials and Solar Cells, 137, 61-67. https://doi.org/10.1016/j.solmat.2015.01.027
[30] Lin, S. C., & Al-Kayiem, H. H. (2016). Evaluation of copper nanoparticles – Paraffin wax compositions for solar thermal energy storage. Solar Energy, 132, 267-278. https://doi.org/10.1016/j.solener.2016.03.004
[31] Li, M. (2013). A nano-graphite/paraffin phase change material with high thermal conductivity. Applied Energy, 106, 25-30. https://doi.org/10.1016/j.apenergy.20 13.01.031
[32] Agarwal, H., Nakara, A., & Shanmugam, V. K. (2019). Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomedicine & Pharmacotherapy, 109, 2561-2572. https://doi.org/10.10 16/j.biopha.2018.11.116
[33] Yu, Z.-T., Fang, X., Fan, L.-W., Wang, X., Xiao, Y.-Q., Zeng, Y., Xu, X., Hu, Y.-C., & Cen, K.-F. (2013). Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes. Carbon, 53, 277-285. https://doi.org/10.1016/j.carbon.2012.10.059
[34] Min, S., Blumm, J., & Lindemann, A. (2007). A new laser flash system for measurement of the thermophysical properties. Thermochimica Acta, 455(1), 46-49. https://doi. org/10.1016/j.tca.2006.11.026
[35] Karaipekli, A., Biçer, A., Sarı, A., & Tyagi, V. V. (2017). Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Conversion and Management, 134, 373-381. https://doi.org/10.1016/j.enconman.2016.12.053
[36] Seo, J., & Shin, D. (2016). Size effect of nanoparticle on specific heat in a ternary nitrate (LiNO3–NaNO3–KNO3) salt eutectic for thermal energy storage. Applied Thermal Engineering, 102, 144-148. https://doi.org/10.1016/j.applthermaleng.2016.03.134
[37] Tiznobaik, H., & Shin, D. (2013). Enhanced specific heat capacity of high-temperature molten salt-based nanofluids. International Journal of Heat and Mass Transfer, 57(2), 542-548. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.062
[38] Jafarian, M., Omid, M., Khanali, M., & Mokhtari Motameni Shirvan, M. (2019). Thermal Conductivity Enhancement of Phase Change Material for Thermal Energy Storage Using Nanotechnology. 50(2), 319-329. https://doi.org/10.22059/ijbse.20 18.264959.665092
[39] Jafarian, M., Omid, M., Khanali, M., & Mokhtari, M. (2020). Investigation of the Effect of Copper and Aluminiumoxide Nanoparticleson the Thermal Energy Storage Capability of Phase Change Material. Energy Engineering & Managment, 10(3), 78-89. https://doi.org/10.22052/10.3.78
دوره 18، شماره 4 - شماره پیاپی 56
کشاورزی / هنر و معماری
بهمن 1400
صفحه 453-473
  • تاریخ دریافت: 13 آبان 1400
  • تاریخ بازنگری: 05 بهمن 1400
  • تاریخ پذیرش: 01 اسفند 1400
  • تاریخ اولین انتشار: 01 اسفند 1400