اصول راهبردی طراحی فرم ساختمان مسکونی در بوشهر، مبتنی بر کاهش مصرف انرژی

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 دانشجوی دکتری تخصصی معماری، گروه معماری، واحد بوشهر، دانشگاه آزاد اسلامی، بوشهر، ایران.

2 استاد مدعو، گروه معماری، واحد بوشهر، دانشگاه آزاد اسلامی، بوشهر، ایران./ استاد، گروه معماری، دانشکده مهندسی معماری و شهرسازی، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران.

3 استاد مدعو، گروه معماری، واحد بوشهر، دانشگاه آزاد اسلامی، بوشهر، ایران./ استادیار، گروه معماری، دانشکده هنر و معماری، دانشگاه خلیج‌فارس، بوشهر، ایران.

چکیده

با توجه به بحران انرژی در جهان، نیاز است که معماران به یکی از عملی‌ترین راهکارهای مدیریت انرژی در ساختمان‌ها، به مبحث ‌به‌کارگیری راهبردهای طراحی غیرفعال توجه کنند. با بهره‌گیری از روش‌های سرمایشی غیرفعال بومی و به‌روز کردن آن‌ها می‌توان به راهبردهایی در زمینه بهینه‌سازی مصرف انرژی سرمایشی در ساختمان‌های امروزی دست ‌یافت. هدف اصلی از این پژوهش، یافتن و اولویت‌بندی راهکارهای غیرفعال از طریق افزودن احجام سایه‌انداز در فرم ساختمان با هدف افزایش سایه‌اندازی فرم بنا در آب‌وهوای گرم و مرطوب بوشهر است که بتواند ضمن حفظ آسایش حرارتی باعث کاهش بار انرژی مصرفی خنک‌کننده‌ها شود. روش تحقیق این پژوهش، روش ترکیبی می‌باشد که اطلاعات ساختمان‌های منتخب در آن با استفاده از برداشت میدانی جمع‌آوری و درنهایت به روش خوشه‌ای دسته‌بندی ‌شده است. سپس در این مقاله به کمک نرم‌افزار دیزاین بیلدر، میزان مصرف انرژی سالانه ساختمان‌ها بررسی ‌شده است. در این پژوهش ابتدا به بررسی ساختمان به لحاظ فرم، شکل، هندسه و جزییات پرداخته شد و فرم بهینه برای هر مدل استخراج گردید، سپس با تجمیع و تلفیق مدل‌های بهینه انتخابی، ساختمان‌های مدنظر دوباره بررسی شد و میزان کاهش مصرف انرژی تحلیل گردید. راهبردهای انتخاب سایه‌اندازها به‌گونه‌ای است که با ترکیب فرم مناسب و عناصر سایه‌انداز باعث می‌شود میزان مصرف انرژی ساختمان اول 25 درصد و ساختمان دوم 16 درصد کاهش مصرف انرژی اولیه سالانه را به دنبال داشته باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Strategic Principles of Designing the form of a Residential Building in Bushehr Based on Reducing Energy Consumption

نویسندگان [English]

  • Elnaz Heydari 1
  • Jamaleddin Mehdinezhad 2
  • Pouya Doulabi 3
1 Ph.D. Student, Department of Architecture, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
2 Visiting Professor, Department of Architecture, Bushehr Branch, Islamic Azad University, Bushehr, Iran./ Professor, Department of Architecture, Faculty of Architecture and Urban Design Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran.
3 Visiting Professor, Department of Architecture, Bushehr Branch, Islamic Azad University, Bushehr, Iran. / Assistant Professor, Department of Architecture, Faculty of Art and Architecture, Persian Gulf University, Bushehr, Iran.
چکیده [English]

Given the global energy crisis, architects need to focus one of the most practical energy management solutions in buildings, the issue of using passive design strategies.  By using indigenous passive cooling methods and updating them, strategies optimizing the cooling energy consumption in contemporary buildings can be achieved.  The main purpose of this study was to find and prioritize inactive solutions by adding shading volumes in building form to increase the shading of the building form in the hot and humid climate of Bushehr, which can reduce the energy consumption of coolers while maintaining thermal comfort. The research method of this study was a combination of field surveys to collect data on selected buildings and the cluster method to classify the data. Then, with the help of Design Builder software, the annual energy consumption of buildings was studied.  In the present study, the building was first studied in terms of form, shape, geometry and feature details and the optimal form for each model was extracted. By integrating and combining the selected optimal models, the buildings were re-examined and the amount of energy consumption reduction was analyzed. The shading selection strategies were such that by combining the appropriate form and shading elements, the energy consumption of the first building was reduced by 25% and the second building by 16%, reducing the annual initial energy consumption.

کلیدواژه‌ها [English]

  • Form geometry Hot and humid climate Shading Energy consumption reduction Self
  • shading shell Design builder
[1] Abdul Mujeebu, M., & Alshamrani, O. S. (2016). Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends. Renewable and Sustainable Energy Reviews, 58, 1647-1663. https://doi.org/10.10 16/j.rser.2015.12.327
[2] Aflaki, A., Mahyuddin, N., Al-Cheikh Mahmoud, Z., & Baharum, M. R. (2015). A review on natural ventilation applications through building façade components and ventilation openings in tropical climates. Energy and Buildings, 101, 153-162. https://doi.org/10.1016/j.enbuild.2015.04.033
[3] Al-Obaidi, S. H. (2011). Metal works of Mosul school in Abbasid era (A. N. Talab, M. Afrough, & M. Ahmadi, Trans.). https://db.ketab.ir/bookview.aspx?bookid=1604117
[4] Gupta, N., & Tiwari, G. N. (2016). Review of passive heating/cooling systems of buildings. Energy Science & Engineering, 4(5), 305-333. https://doi.org/10.1002/ese3.129
[5] Hennicke, P., & Bodach, S. (2010). Energierevolution: Effizienzsteigerung und erneuerbare Energien als globale Herausforderung. Oekom-Verlag. https://books. google.com/books?id=3CPyQwAACAAJ
[6] Kamal, M. A. (2010). A study on shading of buildings as a preventive measure for passive cooling and energy conservation in buildings. International Journal of Civil & Environmental Engineering, 10(6), 19-22. http://www.ijens.org/102406-5252%20I JCEE-IJENS.pdf
[7] Lim, Y.-W., Kandar, M. Z., Ahmad, M. H., Ossen, D. R., & Abdullah, A. M. (2012). Building façade design for daylighting quality in typical government office building. Building and Environment, 57, 194-204. https://doi.org/10.1016/j.buildenv.2012.04.015
[8] Maleki, B. A. (2011). Shading: Passive cooling and energy conservation in buildings. International Journal on Technical and Physical Problems of Engineering (IJTPE), 3(4), 72-79. http://www.iotpe.com/IJTPE/IJTPE-2011/IJTPE-Issue9-Vol3-No4-Dec2011/11-IJTPE-Issue9-Vol3-No4-Dec2011-pp72-79.pdf
[9] Motealleh, P., Zolfaghari, M., & Parsaee, M. (2018). Investigating climate responsive solutions in vernacular architecture of Bushehr city. HBRC Journal, 14(2), 215-223. https://doi.org/10.1016/j.hbrcj.2016.08.001
[10] Pacheco, R., Ordóñez, J., & Martínez, G. (2012). Energy efficient design of building: A review. Renewable and Sustainable Energy Reviews, 16(6), 3559-3573. https://doi. org/10.1016/j.rser.2012.03.045
[11] Palmero-Marrero, A. I., & Oliveira, A. C. (2010). Effect of louver shading devices on building energy requirements. Applied Energy, 87(6), 2040-2049. https://doi.org/ 10.1016/j.apenergy.2009.11.020
[12] Rodriguez-Ubinas, E., Montero, C., Porteros, M., Vega, S., Navarro, I., Castillo-Cagigal, M., Matallanas, E., & Gutiérrez, A. (2014). Passive design strategies and performance of Net Energy Plus Houses. Energy and Buildings, 83, 10-22. https:// doi.org/10.1016/j.enbuild.2014.03.074
[13] Sadineni, S. B., Madala, S., & Boehm, R. F. (2011). Passive building energy savings: A review of building envelope components. Renewable and Sustainable Energy Reviews, 15(8), 3617-3631. https://doi.org/10.1016/j.rser.2011.07.014
[14] Tzikopoulos, A. F., Karatza, M. C., & Paravantis, J. A. (2005). Modeling energy efficiency of bioclimatic buildings. Energy and Buildings, 37(5), 529-544. https:// doi.org/10.1016/j.enbuild.2004.09.002
[15] Robinson, A., & Selkowitz, S. (2013, October). Tips for daylighting with windows. L. B. N. L. Environmental Energy Technologies Division. https://escholarship.org/ uc/item/5qx2n0gj
[16] Freewan, A. A. Y. (2014). Impact of external shading devices on thermal and daylighting performance of offices in hot climate regions. Solar Energy, 102, 14-30. https://doi. org/10.1016/j.solener.2014.01.009
[17] Cho, J., Yoo, C., & Kim, Y. (2014). Viability of exterior shading devices for high-rise residential buildings: Case study for cooling energy saving and economic feasibility analysis. Energy and Buildings, 82, 771-785. https://doi.org/10.1016/j.enbuild.20 14.07.092
[18] Alshamrani, O., & Abdul Mujeebu, M. (2016). Effects of shading strategy and orientation on energy performance of school building. Journal of Architecture and Planning, 28(1), 129-141. https://cap.ksu.edu.sa/sites/cap.ksu.edu.sa/files/imce_images/jap_ksu_jan 2016_en1.pdf
[19] Tzempelikos, A., & Athienitis, A. K. (2007). The impact of shading design and control on building cooling and lighting demand. Solar Energy, 81(3), 369-382. https://doi. org/10.1016/j.solener.2006.06.015
[20] Dutta, A., Samanta, A., & Neogi, S. (2017). Influence of orientation and the impact of external window shading on building thermal performance in tropical climate. Energy and Buildings, 139, 680-689. https://doi.org/10.1016/j.enbuild.2017.01.018
[21] El-Darwish, I., & Gomaa, M. (2017). Retrofitting strategy for building envelopes to achieve energy efficiency. Alexandria Engineering Journal, 56(4), 579-589. https:// doi.org/10.1016/j.aej.2017.05.011
[22] Hernández, F. F., Cejudo López, J. M., Peña Suárez, J. M., González Muriano, M. C., & Rueda, S. C. (2017). Effects of louvers shading devices on visual comfort and energy demand of an office building. A case of study. Energy Procedia, 140, 207-216. https://doi.org/10.1016/j.egypro.2017.11.136
[23] Kumar, R., & Kaushik, S. (2005). Performance evaluation of green roof and shading for thermal protection of buildings. Building and Environment, 40(11), 1505-1511. https://doi.org/10.1016/j.buildenv.2004.11.015
[24] Vujošević, M., & Krstić-Furundžić, A. (2017). The influence of atrium on energy performance of hotel building. Energy and Buildings, 156, 140-150. https://doi.org/ 10.1016/j.enbuild.2017.09.068
[25] Nikoofard, S., Ugursal, V. I., & Beausoleil-Morrison, I. (2011). Effect of external shading on household energy requirement for heating and cooling in Canada. Energy and Buildings, 43(7), 1627-1635. https://doi.org/10.1016/j.enbuild.2011.03.003