بررسی عددی انتقال حرارت و تولید آنتروپی جریان سیال آب/Al2O3 در یک حفره بسته با دو چیدمان مختلف 4 مانع دایروی به روش هیبرید FD-LBM

نوع مقاله : مقاله پژوهشی (نظری)

نویسندگان

1 استادیار، گروه مهندسی مکانیک، دانشگاه فنی و حرفه‌ای، تهران، ایران.

2 استادیار، گروه مهندسی مکانیک، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران.

چکیده

در این پژوهش، جریان، انتقال حرارت و تولید آنتروپی نانوسیال آب/Al2O3 در یک حفره بسته با حضور 4 مانع دایروی با دو چیدمان مختلف در هندسه شبیه‌سازی شده است. تکنیک به‌کاررفته برای شبیه‌سازی جریان نانوسیال براساس روش مشهور نانوسیال تک‌فاز غیرهمگن (مدل بونگیورنو) می‌باشد که در این روش اصولاً نرخ نفوذ در معادله غلظت نانوسیال ضعیف می‌باشد و می‌تواند در همگرایی حل تأثیر منفی داشته باشد. از همین رو به‌منظور غلبه بر این نقیصه، نرم‌افزار مورداستفاده در این شبیه‌سازی فرترن 90 انتخاب گردید و کد موردنظر با استفاده از یک روش جدید FD-LBM با قابلیت TVD نوشته شد که با استفاده از این الگوریتم امکان شبیه‌سازی عددی جریان‌های سیالات با نرخ نفوذ پایین نسبت به نرخ همرفت بالاتر فراهم می‌شود. پارامترهای فعال در این پژوهش عدد ریلی، لویس و درصد حجمی نانوذرات اکسید آلومینیم هستند که تأثیر آنها بر عدد ناسلت، عدد شروود و نرخ آنتروپی تولیدشده در هندسه حل، با دو چیدمان مختلف موانع بررسی می‌گردد. براساس نتایج این مدلسازی تابع جریان و به تبع آن سرعت سیال در چیدمان لوزی به‌مراتب بیشتر از چیدمان مربعی می‌باشد. همچنین مشخص شد که با افزایش نانوذرات نه‌تنها نرخ انتقال حرارت از دیواره افزایش نمی‌یابد بلکه در % 9 = φ مقدار ناسلت نزدیک به 15 درصد کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Numerical Investigation of Heat Transfer Rate and Entropy Generation of Al2O3/Water Nanofluid Flow in a Closed Cavity Containing 4 Circular Cylinders with Two Different Arrangements Using a Hybrid FD-LBM Technique

نویسندگان [English]

  • Amir Javad Ahrar 1
  • Mohammad Omidpanah 1
  • Seyed Ali Agha Mirjalily 2
1 Assistant Professor, Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran.
2 Assistant Professor, Department of Mechanical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran.
چکیده [English]

In this study, the flow patterns, heat transfer rate and entropy generation rate of Al2O3/Water nanofluid was simulated in a closed cavity containing 4 circular cylinders with 2 different arrangements. The renowned single-phase nonhomogeneous technique (Buongiorno Model) was chosen to assess the nanofluid flow and heat transfer rate numerically. However, the diffusion term in the concentration equation of the technique usually possesses a relatively low value, which might cause instability issues during the iteration process. Hence, in order to deal with this problem, an in-house Fortran 90 code was developed using a novel hybrid FD-LBM method with TVD characteristics. The mentioned algorithm has been proved to be a great asset when facing flows with lower rate of diffusion compared to convection. The active parameters in this study were Ra, Le, and Al2O3 nanoparticle volume fractions, and their influence on the Nu and Sh numbers as well as the entropy generation rate of the system were investigated in the cavity for both cylinder arrangements. According to the results of this simulation, the stream function and consequently the flow velocity in the diamond arrangement were much higher compared to the square arrangement. Moreover, it was observed that not only the addition of nanoparticles could not raise the heat transfer rate from the wall, but in φ = 9 %, the Nusselt number experienced an approximate 15 % decrement. 

کلیدواژه‌ها [English]

  • Hybrid FD
  • LBM numerical technique Nanofluid Single
  • phase nonhomogeneous model Arrangements for cylinders Instabilities in LBM solution method
[1] Benos, L., & Sarris, I. E. (2019). Analytical study of the magnetohydrodynamic natural convection of a nanofluid filled horizontal shallow cavity with internal heat generation. International Journal of Heat and Mass Transfer, 130, 862-873. https://doi.org/10. 1016/j.ijheatmasstransfer.2018.11.004
[2] Chiam, H. W., Azmi, W. H., Adam, N. M., & Ariffin, M. K. A. M. (2017). Numerical study of nanofluid heat transfer for different tube geometries – A comprehensive review on performance. International Communications in Heat and Mass Transfer, 86, 60-70. https ://doi.org/10.1016/j.icheatmasstransfer.2017.05.019
[3] Tawfik, M. M. (2017). Experimental studies of nanofluid thermal conductivity enhancement and applications: A review. Renewable and Sustainable Energy Reviews, 75, 1239-1253. https://doi.org/10.1016/j.rser.2016.11.111
[4] Fujii, K. (2005). Progress and future prospects of CFD in aerospace—Wind tunnel and beyond. Progress in Aerospace Sciences, 41(6), 455-470. https://doi.org/10.1016/j. paerosci.2005.09.001
[5] Mavriplis, D. J. (2019, June 17-21). Progress in CFD discretizations, algorithms and solvers for aerodynamic flows. AIAA Aviation 2019 Forum, Dallas, Texas. https://doi.org/10. 2514/6.2019-2944
[7] Versteeg, H. K., & Malalasekera, W. (1995). An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Longman. https://www.amazon.com/Introd uction-Computational-Fluid-Dynamics-Approach/dp/0582218845
[8] Mohamad, A. (2011). Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes (2 ed.). Springer London. https://doi.org/10.1007/978-0-85729-455-5
[9] Salmon, R. (1988). Hamiltonian fluid mechanics. Annual review of fluid mechanics, 20(1), 225-256. https://www.annualreviews.org/doi/abs/10.1146/annurev.fl.20.010 188.001301
[11] Li, Y., LeBoeuf, E. J., & Basu, P. K. (2004). Least-squares finite-element lattice Boltzmann method. Physical Review E, 69(6), 065701-065704. https://doi.org/10.1103/PhysRevE. 69.065701
[12] Li, W., & Luo, L-S. (2016). Finite Volume Lattice Boltzmann Method for Nearly Incompressible Flows on Arbitrary Unstructured Meshes. Communications in Computational Physics, 20(2), 301-324. https://doi.org/10.4208/cicp.211015.040316a
[13] Zarghami, A., & Ahmadi, N. (2014). A Stable Lattice Boltzmann Method for Steady Backward-Facing Step Flow. Arabian Journal for Science and Engineering, 39(8), 6375-6384. https://doi.org/10.1007/s13369-014-1241-1
[14] Li, W., Kaneda, M., & Suga, K. (2013, June 3-6). A stable, low diffusion up-wind scheme for unstructured finite volume lattice Boltzmann method. Proceedings of The 4th Asian Symposium on Computational Heat Transfer and Fluid Flow, Hong Kong. https://www.researchgate.net/profile/Weidong-Li-9/publication/261721140 _A_Stable_Low_Diffusion_Up-wind_Scheme_for_Unstructured_Finite_Volume_ Lattice_Boltzmann_Method/links/0c9605354e70883afd000000/A-Stable-Low-Dif fusion-Up-wind-Scheme-for-Unstructured-Finite-Volume-Lattice-Boltzmann-Met hod.pdf
[15] Ahrar, A. J., & Djavareshkian, M. H. (2017). Novel hybrid lattice Boltzmann technique with TVD characteristics for simulation of heat transfer and entropy generations of MHD and natural convection in a cavity. Numerical Heat Transfer, Part B: Fundamentals, 72(6), 431-449. https://doi.org/10.1080/10407790.2017.1409528
[16] Roe, P. L. (1985, 27June-8July ). Some contributions to the modelling of discontinuous flows. the Fifteenth Summer Seminar on Applied Mathematics, La Jolla, California. htt ps://ui.adsabs.harvard.edu/abs/1985ams..conf..163R
[17] Aslan, E., Taymaz, I., & Benim, A. (2014). Investigation of the lattice Boltzmann SRT and MRT stability for lid driven cavity flow. International Journal of Materials, Mechanics and Manufacturing, 2(4), 317-324. http://www.ijmmm.org/papers/149-TT3003.pdf
[18] Ahrar, A. J., & Djavareshkian, M. H. (2017). Computational investigation of heat transfer and entropy generation rates of Al2O3 nanofluid with Buongiorno's model and using a novel TVD hybrid LB method. Journal of Molecular Liquids, 242(1), 24-39. https://doi.org/10.1016/j.molliq.2017.06.125
[19] Ahrar, A. J., Djavareshkian, M. H., & Ahrar, A. R. (2019). Numerical simulation of Al2O3-water nanofluid heat transfer and entropy generation in a cavity using a novel TVD hybrid LB method under the influence of an external magnetic field source. Thermal Science and Engineering Progress, 14(3805), 100416. https://doi.org/10.1016/j.tsep.2019.100416
[20] Buongiorno, J. (2005). Convective Transport in Nanofluids. Journal of Heat Transfer, 128(3), 240-250. https://doi.org/10.1115/1.2150834
[22] Lenin, R., Joy, P. A., & Bera, C. (2021). A review of the recent progress on thermal conductivity of nanofluid. Journal of Molecular Liquids, 338, 116929. https://doi.org/10.1016/j.mol liq.2021.116929
[23] Porgar, S., Vafajoo, L., Nikkam, N., & Vakili-Nezhaad, G. (2021). A comprehensive investigation in determination of nanofluids thermophysical properties. Journal of the Indian Chemical Society, 98(3), 100037. https://doi.org/10.1016/j.jics.2021.100037
[24] Ahrar, A. J., & Djavareshkian, M. H. (2016). Lattice Boltzmann simulation of a Cu-water nanofluid filled cavity in order to investigate the influence of volume fraction and magnetic field specifications on flow and heat transfer. Journal of Molecular Liquids, 215, 328-338. https://doi.org/10.1016/j.molliq.2015.11.044
[25] Corcione, M. (2011). Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Conversion and Management, 52(1), 789-793. https://doi.org/10.1016/j.enconman.2010.06.072
[26] Fadaei, F., Molaei Dehkordi, A., Shahrokhi, M., & Abbasi, Z. (2017). Convective-heat transfer of magnetic-sensitive nanofluids in the presence of rotating magnetic field. Applied Thermal Engineering, 116, 329-343. https://doi.org/10.1016/j.applthermaleng.2017.01.072
[27] Park, H. K., Ha, M. Y., Yoon, H. S., Park, Y. G., & Son, C. (2013). A numerical study on natural convection in an inclined square enclosure with a circular cylinder. International Journal of Heat and Mass Transfer, 66, 295-314. https://doi.org/10.1016/j.ijheatmasstransfe r.2013.07.029
[28] Kefayati, G. R. (2015). FDLBM simulation of entropy generation in double diffusive natural convection of power-law fluids in an enclosure with Soret and Dufour effects. International Journal of Heat and Mass Transfer, 89, 267-290. https://doi.org/10.1016/j.ijheatmasstransfe r.2015.05.058
[29] Khanafer, K., Vafai, K., & Lightstone, M. (2003). Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer, 46(19), 3639-3653. https://doi.org/10.1016/S0017-9310(03)0 0156-X
[30] Jahanshahi, M., Hosseinizadeh, S. F., Alipanah, M., Dehghani, A., & Vakilinejad, G. R. (2010). Numerical simulation of free convection based on experimental measured conductivity in a square cavity using Water/SiO2 nanofluid. International Communications in Heat and Mass Transfer, 37(6), 687-694. https://doi.org/10.1016/j.ic heatmasstransfer.2010.03.010