شبیه‌سازی و اجرای تجربی فرایند ریخته‌گری دقیق پره ‌سوپرشارژر

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 عضو هیئت علمی، گروه مهندسی مواد و متالورژی، دانشگاه فنی و حرفه‌ای، تهران، ایران.

2 استادیار، گروه مهندسی مکانیک، دانشگاه فنی و حرفه‌ای، تهران، ایران.

چکیده

هدف از این تحقیق، شبیه­سازی فرایند ریخته­گری دقیق پره سوپرشارژر و اجرای عملی آن براساس نتایج حاصل از شبیه­سازی است. برای این منظور قطعه موردنظر نخست پس از مدل­سازی، فرایند در نرم­افزار Pro-Cast تحلیل شد. نتایج این شبیه­سازی نشان داد که انجماد قطعه از لبه­ها شروع می‌شود و به سمت مرکز قطعه حرکت می­کند و به همین علت عیوب انقباض حجمی و سطحی، نیامد در اثر شیب­های حرارتی نامتعادل در مرکز متمرکز می­شود. انتقال حرارت از لبه­ها نسبت به مرکز بسیار سریع‌تر است که دلیل آن هدایت حرارتی لبه­ها و هم­چنین نازکی می­باشد. برای اجرای عملی، قطعه موردنظر طراحی و توسط پرینتر سه­بعدی از جنس پلیمر استفاده گردید. سپس قالب سیلیکونی قطعه از جنس RTV2 تهیه و با تزریق موم مدل مومی تولید شد، پس از آن قالب سرامیکی قطعه برای ذوب­ریزی از جنس SiO2 تهیه گردید. نتایج حاصل از اجرای عملی قطعه نشان داد که به علت عیوب مشخص‌شده در شبیه­سازی باید از سیستم خلا پس از پایان ذوب­ریزی و در دمای بالا استفاده شود در غیر این صورت، قطعه به‌صورت کاملاً معیوب تولید می­گردد. استفاده از خلأ باعث شد تا قطعه به‌صورت کاملاً مطلوب و بدون عیب تولید شود. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation and Experimental Implementation of Investment Casting Process of Supercharger Impeller

نویسندگان [English]

  • Abbas Abbasian 1
  • Seyed Mohammad Jesmani 1
  • Hadi Moshrefzadeh Sani 2
1 Faculty Member, Department of Materials and Metallurgical Engineering, Technical and Vocational University (TVU), Tehran, Iran.
2 Assistant Professor, Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran.
چکیده [English]

The purpose of this research was to simulate the investment casting process of the supercharger blade and its practical implementation based on the simulation results. For this purpose, the desired specimen after modeling was first analyzed in Pro-Cast software. The results of this simulation showed that the solidification of the piece starts from the edges and moves towards the center of the piece, and therefore the volumetric and surface shrinkage defects are not concentrated due to unbalanced thermal gradients in the center. Heat transfer from the edges to the center is much faster due to the thermal conductivity of the edges as well as the thinness. For practical implementation, the desired specimen was designed and used by a polymer 3D printer. Then, the silicone mold of the piece was made of RTV2 and a wax model produced by injecting wax. This was followed by the ceramic mold of the piece being made of SiO2 for melting. The results of the practical execution of the specimen showed that due to the defects identified in the simulation, the vacuum system should be used after the end of melting and at high temperature; otherwise, the piece produced would be completely defective. The use of vacuum caused the piece to be produced in a completely desirable and flawless manner.

کلیدواژه‌ها [English]

  • Investment casting
  • Supercharger blade
  • Design
  • 3D printer
  • Wax model
  • Ceramic slurry
[1] Babazadeh Agh Ismaili, M., & Taremi, S. (2009). Investment Casting. Forouzesh. https: //www.adinehbook.com/gp/product/9648501988
[2] Rangi, M., & Kaviani, S. (2015). Ceramic wax and mold in precision casting. Sades. htt ps://www.gisoom.com/book/11138751/
[3] Degarmo, E. P., Black, J. T., Kohser, R. A., & Black, J. T. (1997). Materials and Processes in Manufacturing (8 ed.). Prentice Hall College Div. https://www.amazon.com/Materials-Pr ocesses-Manufacturing-Paul-Degarmo/dp/0023286210
[4] Stefanescu, D. M. (1998). ASM Handbook: Volume 15: Casting (9 ed.). https://www.am azon.com/ASM-Handbook-D-M-Stefanescu/dp/0871700212
[5] Chen, C-J. (2014). Optimization of mechanical properties in A356 via simulation and permanent mold test-bars [Doctor, Case Western Reserve University]. Cleveland, Ohio. https://www.proquest.com/openview/27c9c1f26d0729e5757bed6d820e8f77/ 1?pq-origsite=gscholar&cbl=18750&diss=y
[6] Chudasama, B. J. (2013). Solidification analysis and optimization using pro-cast. International Journal of Research in Modern Engineering and Emerging Technology, 1(4), 9-19. https ://www.raijmr.com/ijrmeet/wp-content/uploads/2017/12/IJRMEET_2013_vol01_issue_ 04_02.pdf
[7] Phuan, Y. J. (2005). Fe evaluation of thermal property of mould wall material for investment casting and the effect of layers on the hardness of the casting product [Bachelor, Universiti Teknologi Malaysia]. Johor Bahru, Malaysia. http://eprints.utm.my/id/eprint/2648/1/750 63.pdf
[8] Melo, M. L. N. M., Rizzo, E. M. S., & Santos, R. G. (2005). Predicting dendrite arm spacing and their effect on microporosity formation in directionally solidified Al-Cu alloy. Journal of Materials Science, 40(7), 1599-1609. https://doi.org/10.1007/ s10853-005-0659-y
[9] Jie, W., Chen, Z., Reif, W., & Müller, K. (2003). Superheat treatment of Al-7Si-0.55Mg melt and its influences on the solidification structures and the mechanical properties. Metallurgical and Materials Transactions A, 34(3), 799-806. https://do i.org/10.1007/s11661-003-0115-z
[10] Pereira, J. C., Gil, E., Solaberrieta, L., San Sebastián, M., Bilbao, Y., & Rodríguez, P. P. (2020). Comparison of AlSi7Mg0.6 alloy obtained by selective laser melting and investment casting processes: Microstructure and mechanical properties in as-built/as-cast and heat-treated conditions. Materials Science and Engineering: A, 778, 139124. https://doi.org/10.1016/j.msea.2020.139124
[11] Venkataramani, R., Simpson, R., & Ravindran, C. (1995). Effect of melt superheat on maximum nuclei density in A356 alloy. Materials Characterization, 35(1), 81-92. https://doi.org/10.1016/1044-5803(95)80096-4
[12] Wang, M., Song, B., Wei, Q., Zhang, Y., & Shi, Y. (2019). Effects of annealing on the microstructure and mechanical properties of selective laser melted AlSi7Mg alloy. Materials Science and Engineering: A, 739, 463-472. https://doi.org/10.1016/j.mse a.2018.10.047
[13] Sathishkumar, N., Premkumar, P., Bruce, A. R., Pravinkumar, K., & Sudharsan, P. (2020). Design and analysis of an impeller of a turbocharger. International Journal of Research and Review, 7(4), 45-51. https://www.researchgate.net/profile/Sathishkumar-Natesan2/publ ication/341051085_Design_and_Analysis_of_an_Impeller_of_a_Turbocharger/links/5eaaf4d7299bf18b958a553a/Design-and-Analysis-of-an-Impeller-of-a-Turbocharger. pdf
[14] Feneley, A. J., Pesiridis, A., & Andwari, A. M. (2017). Variable Geometry Turbocharger Technologies for Exhaust Energy Recovery and Boosting‐A Review. Renewable and Sustainable Energy Reviews, 71, 959-975. https://doi.org/10.1016/j.rser.201612.125
[15] Romagnoli, A., & Martinez-Botas, R. (2012). Heat transfer analysis in a turbocharger turbine: An experimental and computational evaluation. Applied Thermal Engineering, 38, 58-77. https://doi.org/10.1016/j.applthermaleng.2011.12.022
[16] Serrano, J. R., Navarro, R., García-Cuevas, L. M., & Inhestern, L. B. (2018). Turbocharger turbine rotor tip leakage loss and mass flow model valid up to extreme off-design conditions with high blade to jet speed ratio. Energy, 147, 1299-1310. https://doi.org/10.1016/j.ener gy.2018.01.083
[17] Abdelmadjid, C., Mohamed, S-A., & Boussad, B. (2013). CFD Analysis of the Volute Geometry Effect on the Turbulent Air Flow through the Turbocharger Compressor. Energy Procedia, 36, 746-755. https://doi.org/10.1016/j.egypro.2013.07.087
[18] Matoofi, F. (2006). Aluminum switches and alloys. Fadak Isatis. https://www.gisoom.c om/book/1375194/
[19] Kumar, R., Madhu, S., Aravindh, K., Jayakumar, V., Bharathiraja, G., & Muniappan, A. (2020). Casting design and simulation of gating system in rotary adaptor using procast software for defect minimization. Materials Today: Proceedings, 22, 799-805. https://doi.org/10.1016/j.matpr.2019.10.156