بررسی عددی مشخصه‌های جریان نانوسیال و انتقال حرارت در یک کلکتور خورشیدی سهموی خطی

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 دکتری، گروه مهندسی مکانیک، دانشگاه فنی و حرفه‌ای، تهران، ایران.

2 استادیار، گروه مهندسی مکانیک، دانشگاه فنی و حرفه‌ای، تهران، ایران.

چکیده

در پژوهش حاضر رفتار و عملکرد جریان نانوسیال در یک کلکتور خورشیدی سهموی (پارابولیک) خطی، شبیه‌سازی و مطالعه شده است. جریان به‌صورت سه‌بعدی، آشفته و تراکم‌ناپذیر در نظر گرفته شده است. مدل‌سازی جریان به‌صورت ترکیبی از روش مونت کارلو (MCRT) و شبیه‌سازی عددی بود که به‌ترتیب توسط نرم‌افزارهای soltrace و انسیس فلوئنت اجرا گردید. شار تابشی بازتابیده شده از آینه بر روی لوله جاذب توسط نرم‌افزار soltrace محاسبه شد و توسط کد UDF به انسیس فلوئنت معرفی گردید. خواص ترموفیزیکی شامل دانسیته، گرمای ویژه، ضریب هدایت حرارتی و لزجت، تابعی از دما در نظر گرفته شد. مشاهده شد که در عدد رینولدز 1000 و در دو کسر حجمی 2 و 5 درصد میزان افزایش ضریب انتقال حرارت برای اکسیدآلومینیوم به‌ترتیب 3 و 11 درصد، برای پودر مس 7 و 15 درصد و پودر نقره 7 و 42 درصد است. در عدد رینولدز 15000 به‌ترتیب اکسیدآلومینیوم 8 و 33 درصد، پودر مس 9 و 29 درصد و پودر نقره 8 و 25 درصد افزایش را نشان می‌دهد. نتایج نشان داد که با ثابت ماندن عدد رینولدز، میزان ضریب انتقال حرارت با افزایش مقدار حجمی نانوسیال، افزایش می‌یابد. همچنین مشاهده شد که عملکرد نانوذره پودر نقره در اعداد رینولدز پایین، بهتر از دیگر نانوذرات بود و با افزایش عدد رینولدز از میزان عملکرد آن کاسته می‌شود. عملکرد اکسیدآلومینیوم برخلاف پودر نقره در عدد رینولدز کم مطلوب نمی‌باشد ولی با افزایش عدد رینولدز، عملکرد آن بهبود می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Study of Nanofluid Flow and Heat Transfer Characteristics in Linear Parabolic Trough Solar Collector

نویسندگان [English]

  • Reza Babaei Spouei 1
  • Reza Naseri 2
1 PhD, Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran.
2 Assistant Professor, Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran.
چکیده [English]

In the present study, the performance of nanofluid flow in a Linear Parabolic Trough Solar Collector was simulated and studied. The flow is considered three-dimensional, turbulent and incompressible. Flow modeling is a combination of Monte Carlo Ray Tracing (MCRT) and numerical simulation which was implemented by Soltrace and Ansys Fluent software, respectively. The radiative flux reflected from reflector on the absorber tube was calculated by Soltrace software and introduced to Ansys Fluent by UDF code. Thermophysical properties including density, specific heat, thermal conductivity and viscosity were considered as a function of temperature. It was observed that in Reynolds 1000 number and in two volume fractions of 2 and 5 percent, the enhancement of heat transfer coefficients were respectively 3 and 11 percent for Al2O3, 7 and 15 percent for copper powder (Cu), and 7 and 42 percent for silver powder (Ag). In Reynolds number 15,000, increases of 8 and 33 for Al2O3, 9 and 29% for copper powder (Cu), and 8 and 25% for silver powder (Ag) were respectively observed. The results showed that at a constant Reynolds number, the heat transfer coefficient increased with increased nanofluid volume. It was also observed that the performance of silver powder (Ag) nanoparticles at low Reynolds numbers was better than other nanoparticles, but it decreased with increasing Reynolds number. Unlike silver powder (Ag), the performance of Al2O3 at low Reynolds number was insufficient, but improved with increasing Reynolds number.

کلیدواژه‌ها [English]

  • Linear parabolic trough solar collector
  • Nanofluid
  • Soltrace
  • Ansys fluent
  • Heat transfer coefficient
[1] Masoumnezhad, M., Kazemi, M., Askari, N., Taheri, M. H., & Ghamati, M. (2021). Semi-Analytical Solution of Unsteady Newtonian Fluid Flow and Heat Transfer between two Oscillation Plate under the Influence of a Magnetic Field. Karafan Quarterly Scientific Journal, 18(1), 35-62. https://doi.org/10.48301/kssa.2021.131 037
[2] Tagle-Salazar, P. D., Nigam, K. D. P., & Rivera-Solorio, C. I. (2020). Parabolic trough solar collectors: A general overview of technology, industrial applications, energy market, modeling, and standards. Green Processing and Synthesis, 9(1), 595-649. https://doi.org/10.1515/gps-2020-0059
[3] Roldán, M. I., Valenzuela, L., & Zarza, E. (2013). Thermal analysis of solar receiver pipes with superheated steam. Applied Energy, 103, 73-84. https://doi.org/10.1016/j.apenergy.2012. 10.021
[4] Almanza, R., Lentz, A., & Jiménez, G. (1997). Receiver behavior in direct steam generation with parabolic troughs. Solar Energy, 61(4), 275-278. https://doi.org/10.1016/S0038-092X(97)88854-8
[5] Eck, M., Zarza, E., Eickhoff, M., Rheinländer, J., & Valenzuela, L. (2003). Applied research concerning the direct steam generation in parabolic troughs. Solar Energy, 74(4), 341-351. https://doi.org/10.1016/S0038-092X(03)00111-7
[6] Wang, Y., Liu, Q., Lei, J., & Jin, H. (2015). Performance analysis of a parabolic trough solar collector with non-uniform solar flux conditions. International Journal of Heat and Mass Transfer, 82, 236-249. https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.055
[7] Ghasemi, S. E., Ranjbar, A., & Ramiar, A. (2013). Numerical investigation of effect of Al-water nanofluid on performance of solar parabolic collector. Nanomaterials, 5(14), 100-107. https://nm.shahrood.iau.ir/article_541141_262562a62a759b7092f60bcba0a8e1 54.pdf
[8] Fuqiang, W., Jianyu, T., Lanxin, M., & Chengchao, W. (2015). Effects of glass cover on heat flux distribution for tube receiver with parabolic trough collector system. Energy Conversion and Management, 90, 47-52. https://doi.org/10.1016/j.enconman.2014. 11.004
[9] Reddy, K. S., Ravi Kumar, K., & Ajay, C. S. (2015). Experimental investigation of porous disc enhanced receiver for solar parabolic trough collector. Renewable Energy, 77, 308-319. https://doi.org/10.1016/j.renene.2014.12.016
[10] De Risi, A.,  Milanese, M., & Laforgia, D. (2013). Modelling and optimization of transparent parabolic trough collector based on gas-phase nanofluids. Renewable Energy, 58, 134-139. https://doi.org/10.1016/j.renene.2013.03.014
[11] Khosravi, A., Malekan, M., & Assad, M. E. H. (2019). Numerical analysis of magnetic field effects on the heat transfer enhancement in ferrofluids for a parabolic trough solar collector. Renewable Energy, 134, 54-63. https://doi.org/10.1016/j.renene.2018.11.015
[12] Xu, R. J., Zhao, Y. Q., Chen, H., Wu, Q. P., Yang, L. W., & Wang, H. S. (2020). Numerical and experimental investigation of a compound parabolic concentrator-capillary tube solar collector. Energy Conversion and Management, 204(7), 112218. https://doi.org/10.1016/ j.enconman.2019.112218
[13] Hosseinalipour, S., Rostami, A., & shahriari, G. (2020). Numerical study of circumferential temperature difference reduction at the absorber tube of parabolic trough direct steam generation collector by inserting a twisted tape in superheated region. Case Studies in Thermal Engineering, 21, 100720. https://doi.org/10.1016/j.csite.2020.100720
[14] Siavashi, M., Vahabzadeh Bozorg, M., & Toosi, M. (2021). A numerical analysis of the effects of nanofluid and porous media utilization on the performance of parabolic trough solar collectors. Sustainable Energy Technologies and Assessments, 45, 101179. https://d oi.org/10.1016/j.seta.2021.101179
[15] Shahzad Nazir, M., Shahsavar, A., Afrand, M., Arıcı, M., Nižetić, S., Ma, Z., & Öztop, H. F. (2021). A comprehensive review of parabolic trough solar collectors equipped with turbulators and numerical evaluation of hydrothermal performance of a novel model. Sustainable Energy Technologies and Assessments, 45, 101103. https://doi.org/10.1016/j. seta.2021.101103
[16] Wu, Z., Li, S., Yuan, G., Lei, D., & Wang, Z. (2014). Three-dimensional numerical study of heat transfer characteristics of parabolic trough receiver. Applied Energy, 113, 902-911. https://doi.org/10.1016/j.apenergy.2013.07.050
[17] Kasaeian, A., Daviran, S., Daneshazarian, R., & Rashidi, A. (2015). Performance evaluation and nanofluid using capability study of a solar parabolic trough collector. Energy Conversion and Management, 89, 368-375. https://doi.org/10.1016/j.enconman.2014.09.056
[18] He, Y-L., Xiao, J., Cheng, Z-D., & Tao, Y-B. (2011). A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector. Renewable Energy, 36(3), 976-985. https://doi.org/10.1016/j.renene.2010.07.017
[19] Askari, N., & Taheri, M. H. (2020). Numerical Investigation of a MHD Natural Convection Heat Transfer Flow in a Square Enclosure with Two Heaters on the Bottom Wall. Karafan Quarterly Scientific Journal, 17(1), 97-114. https://doi.org/10.48301/kssa.2020.112759
[20] Jeter, S. M. (1987). Analytical determination of the optical performance of practical parabolic trough collectors from design data. Solar Energy, 39(1), 11-21. https://doi.org/10.1016/S 0038-092X(87)80047-6