مقایسه عملکرد تخمینی محاسبات نرم در پیش‌بینی مقاومت فشاری بتن بازیافتی

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسنده

دکتری، گروه مهندسی عمران، دانشگاه سمنان، سمنان، ایران.

چکیده

از زباله‌های ساختمانی به‌عنوان یکی از مهم‌ترین نگرانی‌های زیست‌محیطی در جهان می‌توان نام برد. این نگرانی در ایران نیز مستثنا نبوده و سالانه بیش از 20 میلیون تن مواد زائد ساختمانی در تهران تولید می‌شود. برای برون‌رفت از این اتفاق، محققان بازیافت بتن و استفاده مجدد آن در مصارف ساختمانی و غیرساختمانی را پیشنهاد می‌دهند. این مقاله با هدف پیش‌بینی مقاومت فشاری بتن 28 روزه با سنگ‌دانه بازیافتی با استفاده از روش ماشین‌های برداری پشتیبان (SVM) و رگرسیون خطی چندگانه (MLR) انجام‌شده است. داده‌های آموزش و آزمایش برای توسعه مدل SVM با استفاده از 124 مجموعه داده موجود از 11 مرجع منتشرشده، تهیه ‌شده است. در فرایند مدل‌سازی، شبکه‌ای بهینه محسوب می‌شود که هم‌زمان با داشتن بالاترین ضریب همبستگی، کمترین میانگین مربعات خطا را نیز دارا باشد؛ از این رو ارزیابی کارایی مدل پیشنهادی، روش ماشین‌های برداری پشتیبان را با روش رگرسیون خطی چندگانه با استفاده از روش k-fold cross validation مقایسه شد. نتایج مقایسه دو ابزار پیش‌بینی نشان داد که ماشین‌های برداری پشتیبان از عملکرد مطلوب‌تری به نسبت روش رگرسیون خطی چندگانه برخوردار است. به همین دلیل می‌توان از روش ماشین‌های برداری پشتیبان به‌عنوان یک روش مؤثر برای پیش‌بینی مقاومت فشاری 28 روزه بتن بازیافتی نام برد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of Estimated Performance of Soft Computing in Predicting Compressive Strength of Recycled Concrete

نویسنده [English]

  • Seyed Reza Salim Bahrami
PhD, Department of Civil Engineering, Semnan University, Semnan, Iran.
چکیده [English]

Construction waste is one of the most important environmental concerns in the world. Iran is not an exception to this concern and more than 20 million tons of construction waste is produced annually in Tehran alone. To overcome this, researchers suggest recycling concrete and reusing it for construction and non-construction purposes. The aim of this paper was to predict the compressive strength of 28-day concrete with recycled aggregate using support vector machines (SVM) and multiple linear regression (MLR). Training and experimental data were developed for the development of the SVM model using 124 existing datasets from 11 published references. In the modeling process, an optimal network is considered to have the lowest mean square error and the highest correlation coefficient. Therefore, to evaluate the efficiency of the proposed model, the method of backup vector machines was compared with the method of multiple linear regression using the k-fold cross validation method. The results of comparing two 28-day compressive strength prediction tools including support vector machines and multiple linear regression using k-fold cross validation technique showed that support vector machines performed better compared to multiple linear regression method. Therefore, the support vector machine method can be mentioned as an effective method for predicting the 28-day compressive strength of recycled concrete.

کلیدواژه‌ها [English]

  • Support machining Recycled aggregate concrete K
  • fold cross validation Compressive strength Multiple linear regression
[1] De Brito, J., & Saikia, N. (2012). Recycled aggregate in concrete: use of industrial, construction and demolition waste. Springer Science & Business Media. https://doi.org/10.1007/978-1-4471-4540-0
[2] Debieb, F., Courard, L., Kenai, S., & Degeimbre, R. (2009). Roller compacted concrete with contaminated recycled aggregates. Construction and Building Materials, 23(11), 3382-3387. https://doi.org/10.1016/j.conbuildmat.2009.06.031
[3] Dilbas, H., Çakır, Ö., & Atiş, C. D. (2019). Experimental investigation on properties of recycled aggregate concrete with optimized Ball Milling Method. Construction and Building Materials, 212, 716-726. https://doi.org/10.1016/j.conbuildmat.2019.04.007
[4] Dimitriou, G., Savva, P., & Petrou, M. F. (2018). Enhancing mechanical and durability properties of recycled aggregate concrete. Construction and Building Materials, 158, 228-235. https://doi.org/10.1016/j.conbuildmat.2017.09.137
[5] Moghimi, M., Shafigh, P., Berengian, J., & Nemati, K. (2010). Experimental Investigation of Effects of Microsilica and Superplasticizer on Some Mechanical Properties of Recycled Concrete Made of Crushed Concrete. Civil Engineering (Faculty of Engineering), 21(2), 153-162. https://www.sid.ir/fa/journal/ViewPaper. aspx?id=134394
[6] Choi, W.-C., & Yun, H.-D. (2012). Compressive behavior of reinforced concrete columns with recycled aggregate under uniaxial loading. Engineering Structures, 41, 285-293. https://doi.org/10.1016/j.engstruct.2012.03.037
[7] Aghili, L. M., & Ramezanianpour, A. M. (2018). Investigation on the correlations between different physical and mechanical properties of concrete made with recycled concrete aggregate. MODARES CIVIL ENGINEERING JOURNAL, 18(3), 153-167. https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=710135
[8] Salimbahrami, S. R., Shakeri, R., & Habibi Hajikolae, B. (2021). Proposed Mix Design of Recycled Concrete Used in Urban Concrete Tables Using Neural Network. Karafan Quarterly Scientific Journal, 17(4), 209-230. https://doi.org/10.48301/ kssa.2021.128404
[9] Wagih, A. M., El-Karmoty, H. Z., Ebid, M., & Okba, S. H. (2013). Recycled construction and demolition concrete waste as aggregate for structural concrete. HBRC Journal, 9(3), 193-200. https://doi.org/10.1016/j.hbrcj.2013.08.007
[10] Rao, A., Jha, K. N., & Misra, S. (2007). Use of aggregates from recycled construction and demolition waste in concrete. Resources, Conservation and Recycling, 50(1), 71-81. https://doi.org/10.1016/j.resconrec.2006.05.010
[11] Chopra, P., Sharma, R. K., & Kumar, M. (2015). Artificial Neural Networks for the Prediction of Compressive Strength of Concrete. International Journal of Applied Science and Engineering, 13(3), 187-204. https://doi.org/10.6703/IJASE.2015.13(3).187
[12] Naderpour, H., Rafiean, A. H., & Fakharian, P. (2018). Compressive strength prediction of environmentally friendly concrete using artificial neural networks. Journal of Building Engineering, 16, 213-219. https://doi.org/10.1016/j.jobe.2018.01.007
[13] Duan, Z. H., Kou, S. C., & Poon, C. S. (2013). Prediction of compressive strength of recycled aggregate concrete using artificial neural networks. Construction and Building Materials, 40, 1200-1206. https://doi.org/10.1016/j.conbuildmat.2012.04.063
[14] Deng, F., He, Y., Zhou, S., Yu, Y., Cheng, H., & Wu, X. (2018). Compressive strength prediction of recycled concrete based on deep learning. Construction and Building Materials, 175, 562-569. https://doi.org/10.1016/j.conbuildmat.2018.04.169
[15] Liang, C., Qian, C., Chen, H., & Kang, W. (2018). Prediction of Compressive Strength of Concrete in Wet-Dry Environment by BP Artificial Neural Networks. Advances in Materials Science and Engineering, 2018, 1-11. https://doi.org/10.1155/2018/6204942
[16] Naderpour, H., Noormohammadi, E., & Fakharian, P. (2017). Prediction of punching shear capacity of RC slabs using support vector machine. Concrete Research, 10(2), 95-107. https://doi.org/10.22124/JCR.2017.2417
[17] Ling, H., Qian, C., Kang, W., Liang, C., & Chen, H. (2019). Combination of Support Vector Machine and K-Fold cross validation to predict compressive strength of concrete in marine environment. Construction and Building Materials, 206(3), 355-363. https://doi.org/10.1016/j.conbuildmat.2019.02.071
[18] Jalal, M., Grasley, Z., Gurganus, C., & Bullard, J. W. (2020). RETRACTED: Experimental investigation and comparative machine-learning prediction of strength behavior of optimized recycled rubber concrete. Construction and Building Materials, 256(4), 119478. https://doi.org/10.1016/j.conbuildmat.2020.119478
[19] Ghanizadeh, A. R., Abbaslou, H., Amlashi, A. T., & Alidoust, P. (2019). Modeling of bentonite/sepiolite plastic concrete compressive strength using artificial neural network and support vector machine. Frontiers of Structural and Civil Engineering, 13(1), 215-239. https://doi.org/10.1007/s11709-018-0489-z
[20] Aiyer, B. G., Kim, D., Karingattikkal, N., Samui, P., & Rao, P. R. (2014). Prediction of compressive strength of self-compacting concrete using least square support vector machine and relevance vector machine. KSCE Journal of Civil Engineering, 18(6), 1753-1758. https://doi.org/10.1007/s12205-014-0524-0
[21] Akande, K. O., Owolabi, T. O., Twaha, S., & Olatunji, S. O. (2014). Performance comparison of SVM and ANN in predicting compressive strength of concrete. IOSR Journal of Computer Engineering, 16(5), 88-94. https://doi.org/10.9790/0661-16518894
[22] Gupta, S. (2007). Support vector machines based modelling of concrete strength. World Academy of Science, Engineering and Technology, 36(1), 305-311. http://citeseerx. ist.psu.edu/viewdoc/download?doi=10.1.1.360.1088&rep=rep1&type=pdf
[23] Yan, K., Xu, H., Shen, G., & Liu, P. (2013). Prediction of Splitting Tensile Strength from Cylinder Compressive Strength of Concrete by Support Vector Machine. Advances in Materials Science and Engineering, 2013(2), 1-13. https://doi.org/10. 1155/2013/597257
[24] Yazdi, J. S., Kalantary, F., & Yazdi, H. S. (2013). Prediction of Elastic Modulus of Concrete Using Support Vector Committee Method. Journal of Materials in Civil Engineering, 25(1), 9-20. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000507
[25] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018
[26] Dibike, Y. B., Velickov, S., Solomatine, D., & Abbott, M. B. (2001). Model Induction with Support Vector Machines: Introduction and Applications. Journal of Computing in Civil Engineering, 15(3), 208-216. https://doi.org/10.1061/(ASCE) 0887-3801(2001)15:3(208)
[27] Samui, P. (2008). Support vector machine applied to settlement of shallow foundations on cohesionless soils. Computers and Geotechnics, 35(3), 419-427. https://doi.org/ 10.1016/j.compgeo.2007.06.014
[28] Ferreira, L., Brito, J. d., & Barra, M. (2011). Influence of the pre-saturation of recycled coarse concrete aggregates on concrete properties. Magazine of Concrete Research, 63(8), 617-627. https://doi.org/10.1680/macr.2011.63.8.617
[29] Yang, K.-H., Chung, H.-S., & Ashour, A. F. (2008). Influence of Type and Replacement Level of Recycled Aggregates on Concrete Properties. American Concrete Institute Materials Journal, 105(3), 289-296. https://bradscholars.brad.ac.uk/handle/10454/7768
[30] Etxeberria, M., Vázquez, E., Marí, A., & Barra, M. (2007). Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cement and Concrete Research, 37(5), 735-742. https://doi.org/ 10.1016/j.cemconres.2007.02.002
[31] Evangelista, L., & de Brito, J. (2007). Mechanical behaviour of concrete made with fine recycled concrete aggregates. Cement and Concrete Composites, 29(5), 397-401. https://doi.org/10.1016/j.cemconcomp.2006.12.004
[32] Corinaldesi, V. (2010). Mechanical and elastic behaviour of concretes made of recycled-concrete coarse aggregates. Construction and Building Materials, 24(9), 1616-1620. https://doi.org/10.1016/j.conbuildmat.2010.02.031
[33] Fonseca, N., de Brito, J., & Evangelista, L. (2011). The influence of curing conditions on the mechanical performance of concrete made with recycled concrete waste. Cement and Concrete Composites, 33(6), 637-643. https://doi.org/10.1016/j. cemconcomp.2011.04.002
[34] Kou, S.-C., & Poon, C.-S. (2008). Mechanical properties of 5-year-old concrete prepared with recycled aggregates obtained from three different sources. Magazine of Concrete Research, 60(1), 57-64. https://doi.org/10.1680/macr.2007.00052
[35] Poon, C. S., Shui, Z. H., Lam, L., Fok, H., & Kou, S. C. (2004). Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cement and Concrete Research, 34(1), 31-36. https://doi.org/10.1016/ S0008-8846(03)00186-8
[36] Gómez-Soberón, J. M. V. (2002). Porosity of recycled concrete with substitution of recycled concrete aggregate: An experimental study. Cement and Concrete Research, 32(8), 1301-1311. https://doi.org/10.1016/S0008-8846(02)00795-0
[37] Khatib, J. M. (2005). Properties of concrete incorporating fine recycled aggregate. Cement and Concrete Research, 35(4), 763-769. https://doi.org/10.1016/j.cemconres. 2004.06.017
[38] Fan, C.-C., Huang, R., Hwang, H., & Chao, S.-J. (2016). Properties of concrete incorporating fine recycled aggregates from crushed concrete wastes. Construction and Building Materials, 112, 708-715. https://doi.org/10.1016/j.conbuildmat.2016. 02.154
[39] Jariwala, V. H., Patel, P. V., & Purohit, S. P. (2013). Strengthening of RC Beams Subjected to Combined Torsion and Bending with GFRP Composites. Procedia Engineering, 51(4), 282-289. https://doi.org/10.1016/j.proeng.2013.01.038
[40] Salimbahrami, S. R. (2021). Prediction of compressive strength of concrete with rubber fibers using artificial neural networks. Karafan Quarterly Scientific Journal, 18(1), 81-98. https://doi.org/10.48301/kssa.2021.131038
[41] Olson, D. L., & Delen, D. (2008). Advanced data mining techniques. Springer Science & Business Media. https://link.springer.com/book/10.1007/978-3-540-76917-0
[42] Smith, M. (1993). Neural Networks for Statistical Modeling International Thomson Computer Press. https://www.amazon.com/Neural-Networks-Statistical-Modeling-Murray/dp/1850328420