اینورتر کلید- خازنی هفت‌سطحی سه‌برابرکننده سطح ولتاژ با قابلیت خودمتعادل‌سازی بدون استفاده از سنسور

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

استادیار، گروه مهندسی برق، دانشگاه فنی و حرفه‌ای، تهران، ایران.

چکیده

این مقاله، به معرفی یک مبدل هفت سطحی تک­فاز پرکاربرد، به‌منظور اتصال منابع تولید انرژی تجدیدپذیر با اندازه ولتاژ کمتر به شبکه‌های قدرت با اندازه‌های بیشتر پرداخته است. افزایش ولتاژ ورودی با ترکیب ولتاژ خازن‌ها در مسیرهای جریان از پیش تعیین‌شده صورت می‌گیرد. تولید شکل موج پلکانی AC خروجی با استفاده از یک منبع ولتاژ DC با کمک روش مدولاسیون تغییر فاز پهنای پالس (PD-PWM) انجام می‌شود. توانایی تعادل ولتاژ خودکار بدون نیاز به کنترل‌کننده یا سنسور خارجی، تعداد کمتر ادوات نیمه‌هادی، بازدهی بالا و سهولت بهره‌برداری از مهم‌ترین ویژگی‌های مبدل پیشنهادی است. قابلیت افزایش ولتاژ ورودی به میزان سه برابر در خروجی افزون بر قابلیت خود متعادل‌سازی ولتاژ خازن‌ها بدون استفاده از مدار کنترلی جانبی یا سنسور از دیگر مزایای ساختار پیشنهادی است. همچنین، با محاسبه تلفات توان و ظرفیت خازن‌های موردنیاز اینورتر پیشنهادی، مقدار بازدهی 8/95 درصد به‌دست آمد. درنهایت، عملکرد اینورتر هفت سطحی پیشنهادی در شرایط مختلف بار در محیط MATLAB SIMULINK شبیه‌سازی و نتایج آن با نتایج به‌دست‌آمده از نمونه اولیه آزمایشگاهی تأیید شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Seven-Level Switched-Capacitor Inverter with Triple Boosting and Sensor-Less Voltage Balancing Capability

نویسندگان [English]

  • Hassan zare
  • Hossein Asgharpour-Alamdari
Assistant Professor, Department of Electrical Engineering, Technical and Vocational University (TVU), Tehran, Iran.
چکیده [English]

This paper introduces a versatile single-phase seven-level inverter for integrating lower voltage renewable energy sources to the higher voltage amplitude power grids. The input voltage was increased by combining the voltage of the capacitors in the predetermined current paths. The output staircase waveform was formed by using a DC voltage source, two capacitors, and the aid of the phase disposition pulse width modulation (PD-PWM) strategy. The self-voltage balancing ability of the capacitors without the need for any external controllers nor sensors, high efficiency, and ease of operation were the most important features of the proposed converter. Requiring fewer semiconductor devices compared to other inverters mentioned in recently published papers ensures the superiority of the proposed boosting multilevel inverter. The ability to increase the input voltage by three times at the output in addition to the ability to self-balance the voltage of the capacitors without the use of a side control circuit or sensor were other advantages of the proposed structure. Furthermore, by calculating the power losses and circuit capacitances, 95.8% efficiency was obtained. Finally, the performance of the proposed seven-level inverter under different load conditions was simulated in MATLAB SIMULINK environment and the results were confirmed by the results obtained from the laboratory prototype.

کلیدواژه‌ها [English]

  • Multi
  • Level Inverter (MLI) Switched
  • Capacitor Circuit PD
  • PWM Boosting Ability Self
  • Voltage Balancing Single
  • Source
[1] Alipour, M. (2017). Optimal allocation of SVC and TCSC in power system by means of fuzzy estimator with the approach of increasing the static stability of the voltage. Karafan Quarterly Scientific Journal, 14(2), 95-121. https://karafan.tvu.ac.ir/article _100507_a471e46c6bae72a3bc558a45346e4e9a.pdf
[2] Panda, K. P., Bana, P. R., Kiselychnyk, O., Wang, J., & Panda, G. (2021). A Single-Source Switched-Capacitor-Based Step-Up Multilevel Inverter With Reduced Components. IEEE Transactions on Industry Applications, 57(4), 3801-3811. https://doi.org/10.1109/ TIA.2021.3068076
[3] Fang, J., Blaabjerg, F., Liu, S., & Goetz, S. M. (2021). A Review of Multilevel Converters With Parallel Connectivity. IEEE Transactions on Power Electronics, 36(11), 12468-12489. https://doi.org/10.1109/TPEL.2021.3075211
[4] Poorfakhraei, A., Narimani, M., & Emadi, A. (2021). A Review of Modulation and Control Techniques for Multilevel Inverters in Traction Applications. IEEE Access, 9, 24187-24204. https://doi.org/10.1109/ACCESS.2021.3056612
[5] Azimi, E., Khodaparast, A., Rostami, M. J., Adabi, J., Adabi, M. E., Rezanejad, M., Rodrigues, E. M. G., & Pouresmaeil, E. (2020). X-Type Step-Up Multi-Level Inverter with Reduced Component Count Based on Switched-Capacitor Concept. Electronics, 9(12), 1-18. http s://doi.org/10.3390/electronics9121987
[6] Khodaparast, A., Adabi, J., & Rezanejad, M. (2019). A step-up switched-capacitor multilevel inverter based on 5-level T-type modules. IET Power Electronics, 12(3), 483-491. https:/ /doi.org/10.1049/iet-pel.2018.5805
[7] Vijeh, M., Rezanejad, M., Samadaei, E., & Bertilsson, K. (2019). A General Review of Multilevel Inverters Based on Main Submodules: Structural Point of View. IEEE Transactions on Power Electronics, 34(10), 9479-9502. https://doi.org/10.1109/TP EL.2018.2890649
[8] Vasu, R., Chattopadhyay, S. K., & Chakraborty, C. (2020). Seven-Level Packed U-Cell (PUC) Converter With Natural Balancing of Capacitor Voltages. IEEE Transactions on Industry Applications, 56(5), 5234-5244. https://doi.org/10.1109/T IA.2020.3008397
[9] Azimi, E., Tavasoli, A., Hafezi, H., & Nateghi, A. (2022). A Dumbbell Type (D-Type) multilevel inverter based on switched capacitor concept. International Journal of Electronics, 109(1), 152-168. https://doi.org/10.1080/00207217.2021.1908621
[10] Chappa, A., Gupta, S., Sahu, L. K., Gautam, S. P., & Gupta, K. K. (2021). Symmetrical and Asymmetrical Reduced Device Multilevel Inverter Topology. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(1), 885-896. https://doi.org/1 0.1109/JESTPE.2019.2955279
[11] Khodaparast, A., Azimi, E., Azimi, A., Adabi, M. E., Adabi, J., & Pouresmaeil, E. (2019). A New Modular Multilevel Inverter Based on Step-Up Switched-Capacitor Modules. Energies, 12(3), 1-16. https://doi.org/10.3390/en12030524
[12] Roy, T., & Sadhu, P. K. (2021). A Step-Up Multilevel Inverter Topology Using Novel Switched Capacitor Converters With Reduced Components. IEEE Transactions on Industrial Electronics, 68(1), 236-247. https://doi.org/10.1109/TIE.2020.2965458
[13] Siddique, M. D., Mekhilef, S., Shah, N. M., Ali, J. S. M., Meraj, M., Iqbal, A., & Al-Hitmi, M. A. (2019). A New Single Phase Single Switched-Capacitor Based Nine-Level Boost Inverter Topology With Reduced Switch Count and Voltage Stress. IEEE Access, 7, 174178-174188. https://doi.org/10.1109/ACCESS.2019.2957180
[14] Mondol, M. H., Tür, M. R., Biswas, S. P., Hosain, M. K., Shuvo, S., & Hossain, E. (2020). Compact Three Phase Multilevel Inverter for Low and Medium Power Photovoltaic Systems. IEEE Access, 8, 60824-60837. https://doi.org/10.1109/ACCESS.2020.298313 1
[15] Ahmed, M., Sheir, A., & Orabi, M. (2017). Real-Time Solution and Implementation of Selective Harmonic Elimination of Seven-Level Multilevel Inverter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 5(4), 1700-1709. https://doi. org/10.1109/JESTPE.2017.2746760
[16] Lee, S. S., Bak, Y., Kim, S. M., Joseph, A., & Lee, K. B. (2019). New Family of Boost Switched-Capacitor Seven-Level Inverters (BSC7LI). IEEE Transactions on Power Electronics, 34(11), 10471-10479. https://doi.org/10.1109/TPEL.2019.2896606
[17] Lee, S. S., Sidorov, M., Idris, N. R. N., & Heng, Y. E. (2018). A Symmetrical Cascaded Compact-Module Multilevel Inverter (CCM-MLI) With Pulsewidth Modulation. IEEE Transactions on Industrial Electronics, 65(6), 4631-4639. https://doi.org/10.1109/T IE.2017.2772209
[18] Liu, J., Zhu, X., & Zeng, J. (2020). A Seven-Level Inverter With Self-Balancing and Low-Voltage Stress. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(1), 685-696. https://doi.org/10.1109/JESTPE.2018.2879890
[19] Lee, S. S. (2018). A Single-Phase Single-Source 7-Level Inverter With Triple Voltage Boosting Gain. IEEE Access, 6, 30005-30011. https://doi.org/10.1109/ACCESS.20 18.2842182
[20] Taghvaie, A., Adabi, J., & Rezanejad, M. (2018). A Self-Balanced Step-Up Multilevel Inverter Based on Switched-Capacitor Structure. IEEE Transactions on Power Electronics, 33(1), 199-209. https://doi.org/10.1109/TPEL.2017.2669377
[21] Ye, Y., Peng, W., & Yi, Y. (2020). Analysis and Optimal Design of Switched-Capacitor Seven-Level Inverter With Hybrid PWM Algorithm. IEEE Transactions on Industrial Informatics, 16(8), 5276-5285. https://doi.org/10.1109/TII.2019.295595 4
[22] Peng, W., Ni, Q., Qiu, X., & Ye, Y. (2019). Seven-Level Inverter With Self-Balanced Switched-Capacitor and Its Cascaded Extension. IEEE Transactions on Power Electronics, 34(12), 11889-11896. https://doi.org/10.1109/TPEL.2019.2904754