بهینه‌سازی افق‌های کنترل پیش‌بین مدل با استفاده از الگوریتم ازدحام ذرات در راستای هم‌گام‌سازی حرکت شبیه‌ساز دریایی

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 دکتری، گروه مهندسی برق، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران.

2 کارشناسی ارشد، گروه مهندسی برق، دانشکده مهندسی برق و مهندسی پزشکی، دانشگاه صنعتی سجاد، مشهد، ایران.

چکیده

شبیه‌سازهای دریایی، ابزارهای مؤثری برای احساس راندن یک شناور دریایی از طریق ایجاد یک محیط مشابه با استفاده از فرمان‌های حرکتی هستند. مشکل اصلی شبیه‌سازها فضای کار محدودی است که به آن­ها اجازه نمی‌دهد تا حرکات دقیق شناور واقعی را ایجاد کنند؛ در نتیجه آن­ها به الگوریتم هم‌گام‌سازی حرکت نیاز دارند. اخیراً استفاده از کنترل پیش‌بین در شبیه‌سازهای دریایی به محبوبیت رسیده است. دریچه‌های افق کنترل و پیش‌بینی آینده بر بار محاسباتی تأثیر می‌گذارد اما از آن جا که این افق­ها به‌صورت دستی توسط طراح انتخاب می­شوند، پایین‌تر از سطح بهینه می‌باشند. در این مقاله، روشی نوین بر مبنای الگوریتم ازدحام ذرات برای دستیابی به بهترین افق‌های کنترل و پیش‌بینی با توجه به حداقل‌رسانی برخی از کمیت‌ها مانند خطای حسی، جابه‌جایی و بار محاسباتی به‌کار گرفته شده است. روش پیشنهادی معایب روش MPC-MCA مانند تخمین تجربی وقت­گیر از طریق تکرار آزمون و خطا برای تعیین افق­های کنترل و پیش‌بینی را برطرف می­کند و در عین حال هزینه و بار محاسباتی را به حداقل می‌رساند. نتایج شبیه‌سازی، کارآمدی روش پیشنهادی را بر مبنای بهبود خروجی عملکرد و بار محاسباتی نشان می­دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of Model Predictive Control Horizons Using Particle Swarm Algorithm to Synchronize Marine Simulator Motion

نویسندگان [English]

  • Navid Moshtaghi Yazdani 1
  • Mohammad Hasan Olyaei Torqabeh 2
1 PhD, Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
2 MSc., Department of Electrical Engineering, Faculty of Electrical Engineering and Biomedical Engineering, Sadjad University of Technology, Mashhad, Iran.
چکیده [English]

Marine simulators are effective tools for making a ship feel like driving by creating a similar environment using motion commands. The main problem with simulators is the limited workspace which does not allow them to generate accurate real-time floating movements, so they require a motion synchronization algorithm. Recently, the use of predictive control has become popular in marine simulators. Values of control horizon and future forecast affect the computational load. However, because the designer manually selects these horizons, they are lower than the optimal level. In this paper, a new method based on particle swarm algorithm was used to achieve the best control and forecast horizons by minimizing some periods such as sensory error, displacement and computational load. The proposed method eliminates the disadvantages of the MPC-MCA method such as time-consuming empirical estimation through trial and error for initial control and forecast horizons, while minimizing optimal cost performance and computational load. The simulation results showed the efficiency of the proposed method based on the improvement of performance output and computational load.

کلیدواژه‌ها [English]

  • Motion step algorithm
  • Predictive control
  • Particle swarm algorithm
  • Optimization
[1] Asadi, H., Mohammadi, A., Mohamed, S., & Nahavandi, S. (2014). Adaptive translational cueing motion algorithm using fuzzy based tilt coordination. In International Conference on Neural Information Processing (pp. 474-482). Springer, Cham. https://doi.org/10.1007/978-3-319-12643-2_58
[2] Asadi, H., Mohammadi, A., Mohamed, S., Zadeh, D. R., & Nahavandi, S. (2014). Adaptive washout algorithm based fuzzy tuning for improving human perception. In International Conference on Neural Information Processing (pp. 483-492). Springer, Cham. https://doi.org/10.1007/978-3-319-12643-2_59
[3] Woon-Sung, L., Jung-Ha, K., & Jun-Hee, C. (1998, May 20-20 ). A driving simulator as a virtual reality tool. Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), Leuven, Belgium https://ieeexplore.ieee.org/abstract/document/676264
[4] Chang, Y.-H., Liao, C.-S., & Chieng, W.-H. (2009). Optimal motion cueing for 5-DOF motion simulations via a 3-DOF motion simulator. Control Engineering Practice, 17(1), 170-184. https://doi.org/10.1016/j.conengprac.2008.05.016
[5] Aminzadeh, M., Mahmoodi, A., & Sabzehparvar, M. (2012). Optimal Motion-Cueing Algorithm Using Motion System Kinematics Final Comment. European Journal of Control, 18, 377. https://doi.org/10.3166/ejc.18.363-375
[6] Fang, Z., & Kemeny, A. (2014, Sep 4-5). Review and prospects of Renault’s MPC based motion cueing algorithm for driving simulator. Proceedings of the Driving Simulation Conference Europe Paris, France. http://dsc2015.tuebingen.mpg.de/ Docs/DSC_Proceedings/2014/DSC14_18_Fang_2.pdf
[7] Fang, Z., Colombet, F., Collinet, J.-C., Kemeny, A., & Center, I. S. (2014, September 4-5). Roll tilt thresholds for 8 DOF driving simulators. In Proc. Driving Simul. Conf, Europe. http/ /:dsc2015.tuebingen.mpg.de/Docs/DSC_Proceedings/2014/DSC14_10_Fang_1.pdf
[8] Groen, E. L., & Bles, W. (2004). How to use body tilt for the simulation of linear self motion. J Vestib Res, 14(5), 375-385. https://doi.org/10.3233/VES-2004-14503
[9] Telban ,R. J., & Cardullo, F. M. (2005). Motion cueing algorithm development: Human-centered linear and nonlinear approaches. Nasa. https://ntrs.nasa.gov/api/citations /20050180246/downloads/20050180246.pdf
[10] Chapron, T., & Colinot, J.-P. (2007, September 12-14) .The new psa peugeot-citroen advanced driving simulator overall design and motion cue algorithm. Proceedings of Driving Simulation Conference, North America – Iowa City. https://car-d.fr/publications/Chapron.pdf
[11] Asadi, H., Mohamed, S., Lim, C. P & ,.Nahavandi, S. (2016). A review on otolith models in human perception. Behavioural brain research, 309, 67-76. https://doi.org/10.1016/j.bbr.2016.03.043
[12] Asadi, H., Mohamed, S., Lim, C. P., Nahavandi, S., & Nalivaiko, E. (2017). Semicircular canal modeling in human perception. Rev Neurosci, 28(5), 537-549. https://doi.org/10.1515/revneuro-2016-0058
[13] Reid, L. D., Nahon, M. A., & Studies, U. o. T. I. f. A. (1986). Flight Simulation Motion-base Drive Algorithms. Part 3, Pilot Evaluations. Institute for Aerospace Studies, University of Toronto. https://books.google.com/books?id=OM5hewAACAAJ
[14] Reid, L. D., & Nahon, M. A. (1986). Flight Simulation Motion-Base Drive Algorithms.: Part 2, Selecting The System Parameters (UTIAS report, Issue. U. o .
Toronto. http://resolver.tudelft.nl/uuid:4faf3129-88c9-4117-82e9-f9819601dafd
[15] Nahon, M. A., & Reid, L. D. (1990). Simulator motion-drive algorithms-A designer's perspective. Journal of Guidance, Control, and Dynamics, 13(2), 356-362. https://doi.org/10 .2514/3.20557
[16] Conrad, B., & Schmidt, S. F. (1971). A study of techniques for calculating motion drive signals for flight simulators. Nasa. https://ntrs.nasa.gov/api/citations/1971 0025909/downloads/19710025909.pdf
[17] Thöndel, E. (2012, January 1) .Design and optimisation of a motion cueing algorithm for a truck simulator. 26th annual European simulation and modelling conference, Högskolan i Skövde. https://www.researchgate.net/profile/Evzen-Thoendel/ publication/290299955_Design_and_optimisation_of_a_motion_cueing_algorithm_for_a_truck_simulator/links/60be166a92851cb13d861bcd/Design-and optimisation-of-a-motion-cueing-algorithm-for-a-truck-simulator.pdf
[18] Casas, S., Coma, I., Portalés, C., & Fernández, M. (2016). Towards a simulation-based tuning of motion cueing algorithms. Simulation Modelling Practice and Theory, 67, 137-154. https://doi.org/10.1016/j.simpat.2016.06.002
[19] Arioui, H., Nehaoua, L., & Amouri, H. (2005, June 27-29). Classic and Adaptive Washout Comparison for a Low Cost Driving Simulator. Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005., Limassol, Cyprus. https://ieeexplore.ieee. org/abstract/document/1467080
[20] Nehaoua, L., Mohellebi, H., Amouri, A., Arioui, H., Espie, S., & Kheddar, A. (2008). Design and Control of a Small-Clearance Driving Simulator. IEEE Transactions on Vehicular Technology, 57(2), 736-746. https://doi.org/10.1109/TVT.2007.905336
[21] Nehaoua, L., Arioui, H., Mohellebi ,H., & Espie, S. (2006, June 14-16 ). Restitution movement for a low cost driving simulator. 2006 American Control Conference, https://ieeexplore.ieee.org/abstract/document/1656614
[22] Dagdelen, M., Reymond, G., Kemeny, A., Bordier, M., & Maïzi, N. (2009 .)Model-based predictive motion cueing strategy for vehicle driving simulators. Control Engineering Practice, 17(9), 995-1003. https://doi.org/10.1016/j.conengprac.2009.03.002
[23] Walker, J. (2015). A motion cueing model for mining and forestry simulator platforms based on Model Predictive Control. In .
[24] Baseggio, M., Beghi, A., Bruschetta, M., Maran, F., & Minen, D. (2011, Oct 5-7). An MPC approach to the design of motion cueing algorithms for driving simulators. 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, DC, USA https://ieeexplore.ieee.org/abstract/document/6083053
[25] Masoumnezhad, M. (2017). Robust control for the indefinite model of the semi-active suspension system. Karafan Quarterly Scientific Journal, 14(42), 57-79 .
[26] Dagdelen, M., Reymond, G., Kemeny, A., Bordier, M., & Maïki, N. (2004). MPC based motion cueing algorithm: Development and application to the Ultimate driving simulator. DSC 2004 Europe (driving simulation conference),
[27] Maran, F. (2013). Model-based control techniques for automotive applications [University of the Studi of Padova]. Padua, Italy. http://automatica.dei.unipd.it/tl_files /pubblicazioni/PhDThesis/MaranFabio_PhD_thesis.pdf
[28] Garrett, N. J., & Best, M .(2010, August 22-26). Driving simulator motion cueing algorithms–a survey of the state of the art. Proceedings of the 10th International Symposium on Advanced Vehicle Control (AVEC), Loughboroug, England. https://repository.lboro.ac.uk/account/articles/9223-61
[29] Hosen, M. A., Hussain, M., Mjalli, F., Khosravi, A., Creighton, D., & Nahavandi, S. (2014). Performance analysis of three advanced controllers for polymerization batch reactor: An experimental investigation. Chemical Engineering Research and
Design, 92, 903–916. https://doi.org/10.1016/j.cherd.2013.07.032
[30] Rodriguez, J., Kazmierkowski, M. P., Espinoza, J. R., Zanchetta, P., Abu-Rub, H., Young, H. A., & Rojas, C. A. (2013). State of the Art of Finite Control Set Model Predictive Control in Power Electronics. IEEE Transactions on Industrial Informatics, 9(2), 1003-1016. https://doi.org/10.1109/TII.2012.2221469
[31] Lee, J. H. (2011). Model predictive control: Review of the three decades of development. International Journal of Control, Automation and Systems, 9(3), 415-424. https://doi.org/10.1007/s12555-011-0300-6
[32] Ruchika, N. R. (2013). Model predictive control: History and development. International Journal of Engineering Trends and Technology (IJETT), 4(6), 2600-2602 .
[33] Stewart, B. T., Venkat, A. N., Rawlings, J. B., Wright, S. J., & Pannocchia, G. (2010). Cooperative distributed model predictive control. Systems & Control Letters, 59(8), 460-469. https://doi.org/10.1016/j.sysconle.2010.06.005
[34] Bemporad, A., Borrelli, F & ,.Morari, M. (2002). Model predictive control based on linear programming - the explicit solution. IEEE Transactions on Automatic Control, 47(12), 1974-1985. https://doi.org/10.1109/TAC.2002.805688
[35] Potočnik, P., & Grabec, I. (2002). Nonlinear model predictive control of a cutting process. Neurocomputing, 43(1), 107-126. https://doi.org/10.1016/S0925-2312 (01)00623-3
[36] Al-Duwaish, H., & Naeem, W. (2001, Sept 7-7). Nonlinear model predictive control of Hammerstein and Wiener models using genetic algorithms. Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204), Mexico City, Mexico https://ieeexplore.ieee.org/abstract/document/973909
[37] Fang, Z., & Kemeny, A. (2016). An efficient Model Predictive Control-based motion cueing algorithm for the driving simulator. Simulation, 92(11), 1025-1033. https://doi.org/10.1177/0037549716667835
[38] Sabri, M. (2017). Stabilization and control of the power system using meta-heuristic algorithms. Karafan Quarterly Scientific Journal, 14(42), 33-55.