آنالیز انرژی و اگزرژی یک نیروگاه تولید مستقیم بخار خورشیدی با متمرکزکننده سهموی خورشیدی برای شهر یزد همراه با چندین پیش‌گرم‌کن آب

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 گروه فنی و مهندسی، دانشکده مهندسی مکانیک، دانشگاه یزد

2 دانشجو دکتری تبدیل انرژی، دانشکده مهندسی مکانیک، دانشگاه یزد

چکیده

در این پژوهش، آنالیز انرژی و اگزرژی برای قسمت­های مختلف نیروگاه خورشیدی با مولد مستقیم بخار (DSG) با مقیاس  برای شرایط جغرافیایی شهر یزد بررسی و مشاهده شد که بیشترین اتلاف انرژی در کندانسور و بیشترین اتلاف اگزرژی در بخش متمرکزکننده خورشیدی اتفاق می‌افتد. برای بهبود راندمان متمرکزکننده، بهتر است آب ورودی به آن توسط پیش‌گرم‌کن‌ها، گرم شود که برای این کار باید فشار و دبی جرمی بخار زیرکش از توربین بهینه شوند. برای فشارهای زیرکش مختلف در حالت­هایی که سیکل دارای چندین پیش­گرم­کن می­باشد، دبی زیرکش و بازده قانون اول و دوم ترمودینامیک بررسی شده­اند تا حالت بهینه به‌دست آید. نتایج به‌دست‌آمده برای حالتی که سیکل دارای چهار پیش‌گرم‌کن می­باشد، نشان می­دهد که بازده قانون اول و دوم به‌ترتیب برابر با 2/17 درصد و 16 درصد است که مقدار قابل‌توجهی افزایش نسبت به حالتی که سیکل دارای یک یا دو یا سه پیش‌گرم‌کن بوده، داشته است؛ بنابراین طبق نتایج به‌دست‌آمده از بازده قانون اول و دوم و بازگشت‌ناپذیری اجزای نیروگاه می‌توان چرخه مقاله حاضر را برای شهر یزد پیشنهاد کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Energy and Exergy Analysis of a Direct Solar Steam Power Plant with Solar Parabolic Concentrator for Yazd City with Several Water Preheaters

نویسندگان [English]

  • katayoon kamali 1
  • mohammad saleh barghi jahromi 2
  • mohammad sefid 1
1 Department of Engineering, Faculty of Mechanical Engineering, Yazd University
2 PhD Student in Energy Conversion, Faculty of Mechanical Engineering, Yazd University
چکیده [English]

In this study, energy and exergy for different parts of a 5 MWe direct steam generation (DSG) solar power plant was analyzed for Yazd city climate. It was observed that the most energy in the condenser and the most exergy losses occurred in the parabolic solar concentrator. To improve the efficiency of the concentrator, this study recommends to preheat the water entering the concentrator with one or more open preheaters in which the extractions of steam from turbine should be optimized by their pressures and mass flow rates. For different cases in which the cycle has up to 4 preheaters, the efficiency of the first and second laws of thermodynamics was investigated. In the case of 4 preheaters, based on obtained results, it was revealed that the efficiency of the first and second laws were 17.2% and 16%, respectively which was a significant increase compared to the case where the cycle had one, two or three preheaters. Therefore, according to the obtained results from the efficiency of the first and second laws as well as the irreversibility of power plant components, the cycle of the present article can be recommended for the city of Yazd.

کلیدواژه‌ها [English]

  • Energy and exergy analysis Direct steam generation solar power plant
  • Water open preheater and extraction
  • Bleed pressure
[1] Bejan, A. (2016). Advanced engineering thermodynamics (4 ed.). John Wiley & Sons. htt ps://doi.org/10.1002/9781119245964
[2] Kotas, T. J. (2013). The exergy method of thermal plant analysis. Butterworth-Heinemann. htt ps://www.amazon.com/Exergy-Method-Thermal-Plant-Analysis-ebook/dp/B01D88U8 TI
[3] Ameri, M., Ahmadi, P., & Khanmohammadi, S. (2008). Exergy analysis of a 420 MW combined cycle power plant. International Journal of Energy Research, 32(2), 175-183. https://doi.or g/10.1002/er.1351
[4] Gupta, M. K., & Kaushik, S. C. (2009). Exergetic utilization of solar energy for feed water preheating in a conventional thermal power plant. International Journal of Energy Research, 33(6), 593-604. https://doi.org/10.1002/er.1500
[5] Mago, P. J., Srinivasan, K. K., Chamra, L. M., & Somayaji, C. (2008). An examination of exergy destruction in organic Rankine cycles. International Journal of Energy Research, 32(10), 926-938. https://doi.org/10.1002/er.1406
[6] Singh, N., Kaushik, S. C., & Misra, R. D. (2000). Exergetic analysis of a solar thermal power system. Renewable Energy, 19(1), 135-143. https://doi.org/10.1016/S0960-1481(99)00 027-0
[7] Habib, M. A., & Zubair, S. M. (1992). Second-law-based thermodynamic analysis of regenerative-reheat Rankine-cycle power plants. Energy, 17(3), 295-301. https://doi.org/10.1016/ 0360-5442(92)90057-7
[8] Eck, M., Zarza, E., Eickhoff, M., Rheinländer, J., & Valenzuela, L. (2003). Applied research concerning the direct steam generation in parabolic troughs. Solar Energy, 74(4), 341-351. https://doi.org/10.1016/S0038-092X(03)00111-7
[9] Zarza, E., Rojas, M. E., González, L., Caballero, J. M., & Rueda, F. (2006). INDITEP: The first pre-commercial DSG solar power plant. Solar Energy, 80(10), 1270-1276. https://doi.org/ 10.1016/j.solener.2005.04.019
[10] Saghafifar, M., Mohammadi, K., & Powell, K. (2020). Design and analysis of a dual-receiver direct steam generator solar power tower plant with a flexible heliostat field. Sustainable Energy Technologies and Assessments, 39(1), 100698. https://doi.org/10.1016/j.seta.20 20.100698
[11] Iodice, P., Langella, G., & Amoresano, A. (2020). Direct steam generation solar systems with screw expanders and parabolic trough collectors: Energetic assessment at part-load operating conditions. Case Studies in Thermal Engineering, 19, 100611. https:/ /doi.org/10.1016/j.csite.2020.100611
[12] Eck, M., & Zarza, E. (2006). Saturated steam process with direct steam generating parabolic troughs. Solar Energy, 80(11), 1424-1433. https://doi.org/10.1016/j.solener.2006.03.011
[13] Popov, D. (2011). An option for solar thermal repowering of fossil fuel fired power plants. Solar Energy, 85(2), 344-349. https://doi.org/10.1016/j.solener.2010.11.017
[14] Mohammadi, A., Ahmadi, M. H., Bidi, M., Ghazvini, M., & Ming, T. (2018). Exergy and economic analyses of replacing feedwater heaters in a Rankine cycle with parabolic trough collectors. Energy Reports, 4, 243-251. https://doi.org/10.1016/j.egyr.2018.03.00 1
[15] Barghi Jahromi, M. S., Iranmanesh, M., & Samimi akhijahani, H. (2021). Thermo-Economic evaluation of a solar dryer with evacuated heat pipe collector and energy storage. Journal Of Applied and Computational Sciences in Mechanics, 32(1), 39-58. https://doi.org/10.220 67/jacsm.2021.56640.0
[16] Iranmanesh, M., & Barghi Jahromi, M. S. (2019). Effect of Forced Convection and PCM Materials on an Indirect Solar Dryer Equipped with Evacuated Heat Pipe Collector. Modares Mechanical Engineering, 19(11), 2607-2614. http://mme.modares.ac.ir/ar ticle-15-25587-en.html http://mme.modares.ac.ir/article-15-25587-en.pdf
[17] Iranmanesh, M., Samimi Akhijahani, H., & Barghi Jahromi, M. S. (2020). CFD modeling and evaluation the performance of a solar cabinet dryer equipped with evacuated tube solar collector and thermal storage system. Renewable Energy, 145(2), 1192-1213. https ://doi.org/10.1016/j.renene.2019.06.038
[18] Gupta, M. K., & Kaushik, S. C. (2010). Exergy analysis and investigation for various feed water heaters of direct steam generation solar–thermal power plant. Renewable Energy, 35(6), 1228-1235. https://doi.org/10.1016/j.renene.2009.09.007
[19] Omidpanah, M., Elomee, S. A. A., & Ashtian Malayer, M. (2021). Process Simulation and Extraction of Parameters Affecting the Production Capacity and Efficiency of a Combined Cycle Power Plant Unit (Case study: Yazd Combined Cycle Power Plant). Karafan Quarterly Scientific Journal, 18(3), 55-77. https://doi.org/10.48301/ kssa.2021.130679
[20] Barghi Jahromi, M., Kalantar, V., & Abdolrezaie, M. (2020). Experimental Study of Effect of Storage Phase Change Materials (PCM) on the Function of a Passive Solar Ventilator. Modares Mechanical Engineering, 20(7), 1709-1717. http://mme.modares.ac.ir/article-15-38118-en.html http://mme.modares.ac.ir/article-15-38118-en.pdf
[21] Duffie, J. A., & Beckman, W. A. (1980). Solar engineering of thermal processes. John Wiley & Sons. https://www.amazon.com/Solar-Engineering-Thermal-Processes-Duffie/dp/04 71050660