بررسی پتانسیل دریاهای شمالی و جنوبی ایران به‌منظور استقرار توربین‌های بادی دریایی با فونداسیون شناور فراساحلی و پایه ثابت ساحلی

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی برق، دانشکده مهندسی ، دانشگاه کردستان، سنندج، ایران. / گروه مهندسی برق، دانشگاه فنی و حرفه ای، تهران، ایران.

2 استادیار، گروه مهندسی مواد و متالورژی، دانشگاه فنی و حرفه‌ای، تهران، ایران.

چکیده

در پژوهش حاضر، پتاسیل و قابلیت آب‌های کشور ایران برای دست‌یابی و نصب انواع توربین‌های بادی، بحث و بررسی می‌شود. به همین منظور، انواع توربین­های بادی دریایی از قبیل شناور فراساحلی به­عنوان نوین­ترین نوع توربین­های بادی و همچنین انواع توربین­های بادی دریایی پایه ثابت ساحلی، بررسی شده است. علاوه بر بررسی وضعیت فناوری توربین بادی در ایران، با توجه به ویژگی­های اقیانوس‌شناسی، مختصات جغرافیایی، هزینه حمل‌ونقل و امکان مونتاژ و سهولت نصب برای دریاهای شمالی و جنوبی ایران، میزان منابع بادی، عمق آب­ها و مساحت موجود و براساس مدل سوات، پیشنهادهایی برای استفاده از انواع مختلف توربین­های مذکور ارائه شده است. در بخشی از پژوهش نیز مقایسه‌ای بین کشور ایران با کشورهای پیشرو در این حیطه صورت پذیرفته است. برای دریاچه خزر، نوع پایه کششی این توربین­ها با توجه به پیچیدگی‌های ساختاری، نصب و حمل‌ونقل دشوار و نیاز به آب­های عمیق، توصیه نمی‌شود درحالی که سازه­های مونوپایل و نسل سوم گرانشی­ها گزینه­های مناسبی برای ژرفای کم این دریاچه هستند. همچنین در نزدیکی سواحل جنوبی ایران به دلیل جزر و مد زیاد و تغییرات بسیار در عمق آب در طول شبانه­روز و تحت تأثیر قرارگرفتن میزان کشش خطوط مهارسازی سکوهای پایه کششی، استفاده از این ساختار توصیه نمی­گردد. برای این سواحل، به دلیل عمق بالای آب در نواحی نزدیک به ساحل و پایداری بسیار خوب در شرایط جوی گوناگون، سازه­های اسپار به‌عنوان گزینه مطلوب معرفی می­گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of Offshore Wind Turbine Foundation - Floating Offshore and Fixed Base Offshore - and Potential of North and South Seas of Iran

نویسندگان [English]

  • Fereshteh Jafari 1
  • Hajieh Bastami 2
1 MSc. Student, Department of Electrical Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran. \ Department of Electrical Engineering, Technical and Vocational University (TVU), Tehran, Iran.
2 Assistant Professor, Department of Materials and Metallurgical Engineering, Technical and Vocational University (TVU), Tehran, Iran.
چکیده [English]

In the present work, the potential and capability of Iran's waters for acquiring and installing different types of wind turbines is discussed. For this purpose, various types of offshore wind turbines such as offshore float as the latest type of wind turbines as well as various types of base fixed offshore wind turbines were studied. In addition to reviewing the state of wind turbine technology in Iran according to oceanographic features, geographical coordinates, transportation costs and the possibility of assembly and ease of installation for the northern and southern seas of Iran, the amount of wind resources, water depth and available area were also taken into consideration. Based on the SWOT model, recommendations were made for the use of different types of turbines. In a part of the research, a comparison was made between Iran and leading countries in this field. For the Caspian Sea, the type of traction base of these turbines is not recommended due to the structural complexity, difficult installation and transportation and the need for deep water, while monopile structures and the third generation of gravity are suitable options for the shallow depths of lakes. In addition, near the southern coast of Iran, due to high tides and many changes in water depth during the day and night and the impact of the tension of the restraint lines of traction platforms, the use of this structure is not recommended. Due to the high depth of water in coastal areas and very good stability in various weather conditions, spar structures are introduced as a desirable option.

کلیدواژه‌ها [English]

  • Wind turbine
  • Floating offshore
  • Iran's water potential
  • Offshore fixed base
  • Foundation
  • Wind turbine technology
[1] European Commission. (2020). Boosting Offshore Renewable Energy for a Climate Neutral Europe. European Commission. https://ec.europa.eu/commission/ presscorner/detail/en/IP_20_2096
[2] Feldhaus, P., & Vahlenkamp, T. (2010, October). Transformation of Europe’s Power System until 2050 Including Specific Considerations for Germany Electric Power and Natural Gas Practice. https://www.mckinsey.com/~/media/mckinsey/dotcom /client_service/epng/pdfs/transformation_of_europes_power_system.ashx
[3] Dai, K., Bergot, A., Liang, C., Xiang, W.-N., & Huang, Z. (2015). Environmental issues associated with wind energy – A review. Renewable Energy, 75, 911-921. https://doi.org/10.1016/j.renene.2014.10.074
[4] Heronemus, W. E. (1972, Sep. 11-13). Pollution-free energy from offshore winds 8th Annual Conference and Exposition, Marine Technology Society,, Washington, D.C. https://ci.nii.ac.jp/naid/10029324950/
[5] Barltrop, N. (1993). Multiple unit floating offshore wind farm (MUFOW). Wind Engineering, 17(4), 183-188.
[6] Tong, K. C. (1998). Technical and economic aspects of a floating offshore wind farm. Journal of Wind Engineering and Industrial Aerodynamics, 74-76, 399-410. https://doi.org/10.1016/S0167-6105(98)00036-1
[7] Henderson, A. R., & Patel, M. H. (1998, January). Floating offshore wind energy. BWEA Conference,  https://www.researchgate.net/profile/Andrew-Henderson/ publication/30415925_Floating_Offshore_Wind_Energy/links/544d686b0cf24b5d6c42b522/Floating-Offshore-Wind-Energy.pdf
[8] Henderson, A. R., Watson, G. M., Patel, M. H., & Halliday, J. A. (2000). Floating Offshore Wind Farms–An Option? Proceedings of the offshore wind energy in mediterranean and other European seas, Siracusa, Sicilia, Italy, 15.
[9] Energy Technologies Institute. (2022). Deep Water. Energy Technologies Institute LLP. https://www.eti.co.uk/programmes/offshore-wind/deep-water
[10] Onstad, A. E., Stokke, M., & Sætran, L. (2016). Site Assessment of the floating wind turbine Hywind Demo. Energy Procedia, 94, 409-416. https://doi.org/10.1016/j. egypro.2016.09.205
[11] McPhee, D. (2020). ‘World’s largest’ floating wind farm off Aberdeenshire delayed by six months. Aberdeen Journals Ltd. https://www.pressandjournal.co.uk/fp/news/ aberdeen-aberdeenshire/2561968/worlds-largest-floating-wind-farm-off-aberdeen shire-delayed-by-six-months/
[12] Pérez-Collazo, C., Greaves, D., & Iglesias, G. (2015). A review of combined wave and offshore wind energy. Renewable and Sustainable Energy Reviews, 42, 141-153. https://doi.org/10.1016/j.rser.2014.09.032
[13] Ye, K., & Ji, J. (2018). The effect of the rotor adjustment on the vibration behaviour of the drive-train system for a 5 MW direct-drive wind turbine. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(17), 3027-3044. https://doi.org/10.1177/0954406217729418
[14] ETIPWind Executive CommitteeAlexander Vandenberghe, W. T., WindEurope,. (2020). ETIPWindRoadmap. Etipwind. https://etipwind.eu/files/reports/ETIP Wind-roadmap-2020.pdf
[15] Kaveh, A., & Sabeti, S. (2019). Optimal Design Of Jacket Supporting Structures For Offshore Wind Turbines Using Enhanced Colliding Bodies Optimization Algorithm [Research]. International Journal of Optimization in Civil Engineering, 9(1), 129-145.
[16] Ye, K. (2018). A study of the dynamic performance of the multi-system involved in the offshore floating type wind turbine. https://opus.lib.uts.edu.au/handle/10453/ 133157
[17] Aghamiri, S. R., . Ghadami, Farid. (2016). Review of wind turbines and offshore wind turbines, advantages and limitations. National Conference on Applied Engineering in Young and Elite Researchers Club, Islamic Azad University, West Branch of Tehran, Iran. https://www.sid.ir/Fa/Seminar/ViewPaper.aspx?ID=88247
[18] Department of Energy. (2014, June 20). How Do Wind Turbines Work? . energy.gov. https://www.energy.gov/articles/how-wind-turbine-works
[19] Demirtas, O. (2013). Evaluating the Best Renewable Energy Technology For Sustainable Energy Planning. International Journal of Energy Economics and Policy, 3(S), 23-33.
[20] Alamdari, E., . Wasti khabaz, Mahmoud,. Omidi, Hossein. . (2013). wind energy and construction of wind power plants with iranian technology. 1st national conference on new and clean energy, Hamedan, Iran. https://civilica.com/doc/210011/
[21] International Renewable Energy Agency. (2011-2020). Data & Statistics. IRENA - International Renewable Energy Agency. https://www.irena.org/statistics
[22] Zeinali, T., Jamil, M., & Najafi, G. H. (2018). Technology of construction and installation of offshore wind farms for coastal areas of Iran. Conference on Civil Engineering, Architecture and Urban Planning of the Islamic World, Iran. https://civilica.com/doc/775571
[23] Zafar, U. (2018). Literature Review of Wind Turbines. (Chair of Geotechnical Engineering Bauhaus Universität, Weimar, Issue. https://www.researchgate.net/ publication/329680977_Literature_Review_of_Wind_Turbines
[24] Chattot, J.-J. (2011). Wind turbine aerodynamics: analysis and design. International Journal of Aerodynamics, 1(3-4), 404-444. https://doi.org/10.1504/IJAD.2011. 038853
[25] David E. Watson. (2015). Wind Turbine Power Coefficient (Cp). FT EXPLORING SCIENCE and TECHNOLOGY. https://www.ftexploring.com/wind-energy/wind-power-coefficient.htm
[26] Climate-Charts. (2021). Wind Speed. Climate-Charts. https://www.climate-charts.com /World-Climate-Maps.html
[27] Akhila Dharanikota & Suresh Rajendran. (2019, 07/23). Numerical And Experimental Methods For Offshore Wind Turbine Design-A Review. International Conference on Computational and Experimental Marine Hydrodynamics (MARHY 2018), Chennai,India. https://www.researchgate.net/publication/334625059_Numerical_ And_Experimental_Methods_For_Offshore_Wind_Turbine_Design-A_Review
[28] Sangbaad. (2021). Wind Turbin. sangbaad. http://www.sangbaad.ir/category/%D9% 85%D9%82%D8%A7%D9%84%D8%A7%D8%AA/%D8%A7%D9%86%D8%B1%DA%98%DB%8C-%D8%A8%D8%A7%D8%AF/
[29] Iranian National Institute for Oceanography and Atmospheric Science. (2021). About INIOAS. Iranian National Institute for Oceanography and Atmospheric Science. http://www.inio.ac.ir/Default.aspx?tabid=1204
[30] Zereshkian, S., & Mansoury, D. (2018). The Assessment of Offshore Wind Energy as a source of Electrical Energy for Offshore Oil and Gas Platforms of the Caspian Sea. Hydrophysics, 4(1), 57-68.
[31] Niknam Germi, H., Hakimzadeh, H., & Madadi, H. (2018). Feasibility Study of Installing Offshore Wind under Wind and Wave Environmental Loads in Caspian Sea. Journal of Maritime Transport Industry, 4(1), 4-17. https://doi.org/10.30474/ jmti.2018.64895
[32] Marinepress. (2019, October 4). map and infographic of the depth of the caspian sea (caspian). Marinepress. https://marinepress.ir/
[33] Wandji, W. N., Natarajan, A., & Dimitrov, N. (2016). Development and design of a semi-floater substructure for multi-megawatt wind turbines at 50+ m water depths. Ocean Engineering, 125, 226-237. https://doi.org/10.1016/j.oceaneng.2016.07.021
[34] Butterfield, S., Musial, W., Jonkman, J., & Sclavounos, P. (2005, October 26–28). Engineering challenges for floating offshore wind turbines. A National laboratory of the U.S. Department of EnergyOffice of Energy Efficiency & Renewable Energy, Copenhagen, Denmark. https://www.nrel.gov/docs/fy07osti/38776.pdf
[35] RazaghiKaljahi, A., LotfollahiYghin, M. A. . (2013). Investigating the performance of tension base wind turbines against gravity-environmental forces and how to increase the efficiency of offshore wind turbines in the southeast of the Caspian Sea. The first National Conference on New and Clean Energy, Hamedan, Iran. https://civilica.com/doc/210099
[36] Nilsson, D., & Westin, A. (2014). Floating wind power in Norway-Analysis of opportunities and challenges. CODEN: LUTEDX/TEIE, 1-154.
[37] RazaghiKaljahi, A., LotfollahiYghin, M. A. . (2013). Investigation and evaluation of the possibility of using different options of offshore wind turbines according to the environmental and geotechnical conditions of the coasts and seas. The first National Conference on New and Clean Energy, Hamedan, Iran. https://civilica. com/doc/210099
[38] Esteban, M. D., Lopez-Gutierrez, J., & Negro, V. (2019). Gravity-Based Foundations in the Offshore Wind Sector. Journal of Marine Science and Engineering, 7(3), 64. https://doi.org/10.3390/jmse7030064
[39] Pourshafie, F., Lashtehneshaei, M. A., & NezamivandChegini, A. H. . (2017). Feasibility study of installing offshore wind turbines in the southwestern part of the Caspian Sea. 16th Iran Hydraulic Conference, Ardabil, Iran. https://civilica. com/doc/727392
[40]Tabarsa, A. (2017). Feasibility Study of Offshore Wind Turbine Project in Caspian Sea. International Conference on Macro Science and Engineering Infrastructure Development., Tehran, Iran. https://civilica.com/doc/730425
[41] Rezaei Monfared, H., . Sedaghat, Aref,. Watani Oskooi, Asghar. (2014). Investigation of shallow northern and southern parts of the persian gulf for installation of offshore wind turbines according to environmental conditions. The first regional conference on sea, development and water resources of the persian gulf coastal regions, Hormozgan, Iran. https://civilica.com/doc/393396/
[42] Malhotra, S. (2011, April 04). Selection, Design and Construction of Offshore Wind Turbine Foundations. In D. I. Al-Bahadly (Ed.), Wind Turbines (pp. 36). InTech. https://doi.org/10.5772/15461
[43] Shrestha, S. (2015). Design and analysis of foundations for onshore tall wind turbines Clemson]. South Carolina. https://tigerprints.clemson.edu/cgi/viewcontent.cgi? article=3296&context=all_theses
[44] Esteban, M. D., Couñago, B., López-Gutiérrez, J. S., Negro, V., & Vellisco, F. (2015). Gravity based support structures for offshore wind turbine generators: Review of the installation process. Ocean Engineering, 110, 281-291. https://doi.org/10.1016/ j.oceaneng.2015.10.033
[45] Aarsleff. (2021). Offshore Wind Turbine Foundations. AARSLEFF. https://www. aarsleff.com/
[46] Seatowe. (2022). Self-installing foundations optimized for production and logistics. Seatower. http://seatower.com/home/
[47] Razmjo, A., & Shirmohammadi, R. (2016). Statistical Analysis and Potential Evaluation of Wind Energy in Dayyer port [Research]. Iranian Journal of Energy, 19(1), 167-179.
[48] Sadeghian, A., Shirzadeh, A. . (2005). A study of location selection methods for installing wind turbines. 5th National Energy Conference, Tehran, Iran. https://civilica.com/doc/20191
[49] Persiangulfstudies. (2021). Depth map of persian gulf, strait of hormuz and makran sea (oman). The persian gulf studies center. http://www.persiangulfstudies. com/fa/pages/792
[50] Tahmasbi Fard, A., Azarsina, F., & Kazemi, S. (2017). Feasibility study of offshore wind turbine construction with jacket guard structure in the Persian Gulf region using SACS engineering software. The first international conference on new developments in civil engineering, Amol, Iran. https://civilica.com/doc/726970
[51] Junginger, M., Agterbosch, S., Faaij, A., & Turkenburg, W. (2004). Renewable electricity in the Netherlands. Energy Policy, 32(9), 1053-1073. https://doi.org/10. 1016/S0301-4215(03)00063-6
[52] Mingjun, B. (2017). Design Flow of Monopile Foundation for Offshore Wind Turbine. Southern Energy Construction, 4(S1), 56-61. https://doi.org/10.16516/j.gedi.issn 2095-8676.2017.S1.011
[53] 4Coffshore. (2021). Monopiles Support Structures by 4C Offshore. 4Coffshore. https://www.4coffshore.com/
[54] Ali, H. M., Al-Esbe, I., & Alwan, H. M. (2021). A review of offshore wind turbines: global added capacity, monopile structure foundations stresses and deflection. Periodicals of Engineering and Natural Sciences (PEN), 9(2), 712-731. https://doi.org/10.21533/pen.v9i2.1879
[55] Achmus, M., Kuo, Y.-S., & Abdel-Rahman, K. (2009). Behavior of monopile foundations under cyclic lateral load. Computers and Geotechnics, 36(5), 725-735. https://doi.org/10.1016/j.compgeo.2008.12.003
[56] Anaya-Lara, O., Tande, J. O., Uhlen, K., & Merz, K. (2018). Offshore Wind Energy Technology. John Wiley & Sons. https://www.wiley.com/en-us/Offshore+Wind+ Energy+Technology-p-9781119097761
[57] Peng, J., Clarke, B., & Rouainia, M. (2011). Increasing the resistance of piles subject to cyclic lateral loading. Journal of Geotechnical and Geoenvironmental Engineering, 137(10), 977-982. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000504
[58] Tomlinson, M. J., & Boorman, R. (2001). Foundation design and construction. Pearson education. https://www.pearson.com/uk/educators/higher-education-educators/program/Tomlinson-Foundation-Design-and-Construction-7th-Edition/ PGM521364.html
[59] Smulders. (2022). Beatrice Offshore Wind Farm | Jackets. Smulders Group Smulders is a member of Eiffage Group. https://www.smulders.com/en/beatrice
[60] 4Coffshore. (2021). Tripod Support Structures by 4C Offshore. 4Coffshore. https://www.4coffshore.com/
[61] Amirinia, G. H. R., Zahbion, B., & Mazaheri, S. (2012). Investigating the effect of sea currents on the dynamic response of offshore floating wind turbines. 14th Marine Industries Conference, Tehran, Iran. https://civilica.com/doc/473527
[62] Roddier, D., Cermelli, C., Aubault, A., & Weinstein, A. (2010). WindFloat: A floating foundation for offshore wind turbines. Journal of renewable and sustainable energy, 2(3), 033104. https://doi.org/10.1063/1.3435339
[63] Savenije, L., Ashuri, T., Bussel, G., & Staerdahl, J. (2010). Dynamic modeling of a spar-type floating offshore wind turbine. European Wind Energy Conference and Exhibition (EWEC), Warsaw,  https://www.researchgate.net/profile/Gerard-Van-Bussel/publication/254852069_Dynamic_modeling_of_a_spar-type_floating_offshore_wind_turbine/links/0deec53bc12eb20025000000/Dynamic-modeling-of-a-spar-type-floating-offshore-wind-turbine.pdf
[64] Jonkman, J. (2007). Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine. Nrel. https://www.nrel.gov/docs/fy08osti/41958.pdf
[65] IRENA. (2011-2020). Statistics Time Series. IRENA - International Renewable Energy Agency. https://www.irena.org/Statistics/View-Data-by-Topic/Capacity-and-Generation/Statistics-Time-Series
[67] Hyonhee Shin. (2021, February 5). South Korea unveils $43 billion plan for world's largest offshore wind farm. REUTERS. https://finance.yahoo.com/news/south-korea-unveils-43-billion-102034227.html
[68] Aya Takada. (2020, Des 15). Japan Plans Huge Offshore Wind Expansion to Hit Climate Goal. Bloomberg L.P. https://www.bloombergquint.com/business/japan-to-lift-offshore-wind-capacity-fourfold-in-decade-to-2040
[69] Reve. (2020, December 9). Offshore Wind Power in India: Key policy advances can lead to rapid gains for sector. Evwind. https://www.evwind.es/2020/12/09/ offshore-wind-power-in-india-key-policy-advances-can-lead-to-rapid-gains-for-sector/78461
[70] Adrijana Buljan. (2021, March 30). US Jumpstarts Offshore Wind, Targets 30 GW by 2030 offshore wind. https://www.offshorewind.biz/2021/03/30/us-jumpstarts-offshore-wind-targets-30-gw-by-2030/
[71] IRENA. (2021). World Energy Transitions Outlook: 1.5°C Pathway. IRENA. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/March/ IRENA_World_Energy_Transitions_Outlook_2021.pdf
[72] Steve Hanley. (2021, February 12). Vestas Unveils World’s Most Powerful Offshore Wind Turbine. cleantechnica. https://cleantechnica.com/2021/02/12/vestas-unveils-worlds-most-powerful-offshore-wind-turbine/
[73] IRENA. (2020, June). Renewable Power Generation Costs in 2019. IRENA - International Renewable Energy Agency. https://www.irena.org/-/media/Files/ IRENA/Agency/Publication/2020/Jun/IRENA_Power_Generation_Costs_2019.pdf
[74] Shakouri.G, H., Kazemi, A., Abdolahpour, S., & Goldansaz, S.-M.-R. (2020). Economic, Social and Environmental Assessment of Electricity Generation from Renewable and Gas Technologies [Research]. Iranian Journal of Energy, 23(3), 7-33.
[75] Motahari, S. A. A., Ahmadian, M., Abedi, Z., & Ghaffarzadeh, H. R. (2014). Economic Evaluation Of Wind Power Development In Iran Considering The Effect Of Energy Price Liberalization Policy. Iranian Energy Economics, 3(10), 179-200.