تأثیر ناهمسانی تایر بر میزان هدررفت توان تولیدی موتور

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 عضو هیات علمی، مرکز آموزش مهارت‌های مهندسی، دانشگاه صنعتی شریف، تهران، ایران.

2 عضو هیات علمی، گروه مهندسی مکانیک، دانشگاه فنی و حرفه‌ای، تهران، ایران.

چکیده

در حالت ایده‌آل باید تایر از نظر ابعاد هندسی، ضریب فنریت (سختی) و توزیع جرم، کاملاً همسان باشد. در این شرایط، هنگام حرکت خودرو، تایر بدون اعمال هیچ‌گونه نیرو و ارتعاشات اضافه و مضر به حرکت دورانی خود ادامه خواهد داد اما فرضیه حالت ایده‌آل فقط در شرایط تئوری امکان‌پذیر است و هیچ‌گاه در عمل قابل دستیابی نخواهد بود؛ بنابراین در عمل، تایر همواره دارای مقداری از انواع ناهمسانی‌های مختلف می‌باشد. این پژوهش به بررسی هدررفت انرژی یک تایر ناهمسان می‌پردازد. برای این منظور، ابتدا با استفاده از روش‌های تحلیلی، میزان نیروهای عمودی خالص اعمال‌شده به چرخ که ناشی از ناهمسانی و بارگذاری اولیه می‌باشد، استخراج گردید. سپس مدل‌سازی موردنظر در نرم‌افزار متلب صورت پذیرفت. پس ‌از آن، نیروی اصطکاک بین تایر و زمین محاسبه ‌شد و با نیروی محرک موتور مقایسه شد تا میزان هدررفت انرژی بین تایر و زمین استخراج گردد. در نهایت میزان توان تلف‌شده به دلیل وجود ناهمسانی تایر بررسی و ارزیابی شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Tire Non-uniformity on Engine Power Loss

نویسندگان [English]

  • Sayyad Nasiri 1
  • Hossein Rahimi Asiabaraki 2
1 Faculty Member, Center for Engineering Skills, Sharif University of Technology, Tehran, Iran.
2 Faculty Member, Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran.
چکیده [English]

An ideal tire should be completely uniform in geometric dimension, mass distribution and stiffness coefficient. Under such conditions, the tire would rotate without any unwanted and harmful vibrations and/or force alterations delivered to the vehicle body as it moves. However, the ideal conditions are only theoretically possible and cannot be the case in actual conditions. Accordingly, a tire has some non-uniformities in actual conditions. This paper aims to study the lost energy of a non-uniform tire of a passenger car. To achieve this, the vertical force on the tire, which is due to initial loading and also each case of non-uniformity, was analytically calculated. Then, the equations were simulated in MATLAB software package. This was followed by comparing the frictional force between the tire and ground to the engine force to calculate the power loss. Finally, the value of power loss as a result of all kinds of tire non-uniformity was evaluated.

کلیدواژه‌ها [English]

  • Tire
  • Non-uniformity
  • Imbalance
  • Power loss
  • Engine
[1] Wong, J. Y. (2008). Theory of ground vehicles (4th ed.). John Wiley & Sons. https://www.wiley.com/en-us/Theory+of+Ground+Vehicles%2C+4th+Edition-p-9780470170380
[2] Gillespie, T. D. (2021). Fundamentals of vehicle dynamics (2nd ed.). SAE International. https://www.sae.org/publications/books/content/r-506/
[3] Reimpell, J., Stoll, H., & Betzler, J. W. (2001). The automotive chassis: engineering principles (2nd ed.). Butterworth-Heinemann. https://www.elsevier.com/books/ the-automotive-chassis-engineering-principles/reimpell/978-0-7506-5054-0
[4] Nasiri, S., Sina, N., & Eslami, A. (2015). Multi-objective optimisation of McPherson strut suspension mechanism kinematics using random search method. Indian journal of science and technology, 8(16), 10. https://doi.org/10.17485/ijst/2015/v8i16/62548
[5] Mambretti, F. N. (1989, June 14-16). Road and tyre non-uniformities: Simulation of their effects inside a vehicle. 2nd International Conference on New Developments in Powertrain and Chassis Engineering, Strasbourg, France. https://jglobal.jst.go. jp/detail?JGLOBAL_ID=200902057981930111
[6]  Song, S. K., Pak, C. H., Hong, S. C., Oh, J. W., Kim, J. H., & Kim, C. S. (1993, November 15-19). Vibration analysis of the steering wheel of a passenger car due to the tire nonuniformity. Seventh International Pacific Conference On Automotive Engineering, Phoenix, Arizona. https://www.sae.org/publications/technical-papers/content/931918/
[7] Kim, K.-W., Park, J.-B., & Lee, S.-J. (2005, May 16-19). Tire mass imbalance, rolling phase difference, non-uniformity induced force difference, and inflation pressure change effects on steering wheel vibration. SAE 2005 Noise and Vibration Conference and Exhibition, Traverse City, Michigan.https://doi.org/10.4271/2005-01-2317
[8] Sina, N., Hayeri Yazdi, M. R., & Esfahanian, V. (2021). Investigation of Vehicle Energy Demand considering the Modified Tire Power Loss. Amirkabir Journal of Mechanical Engineering, 53(6), 11-11. https://doi.org/10.22060/mej.2021.18333. 6802
[9] Barrand, J., & Bokar, J. (2008). Reducing tire rolling resistance to save fuel and lower emissions. SAE International Journal of Passenger Cars-Mechanical Systems, 1(1), 9-17. https://doi.org/10.4271/2008-01-0154
[10] d’Ambrosio, S., & Vitolo, R. (2019). Potential impact of active tire pressure management on fuel consumption reduction in passenger vehicles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(4), 961-975. https://doi.org/10.1177/0954407018756776
[11] Sina, N., Hairi Yazdi, M. R., & Esfahanian, V. (2020). A novel method to improve vehicle energy efficiency: Minimization of tire power loss. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(4), 1153-1166. https://doi.org/10.1177/0954407019861241
[12] Sina, N., Nasiri, S., & Karkhaneh, V. (2015). Effects of resistive loads and tire inflation pressure on tire power losses and CO2 emissions in real-world conditions. Applied Energy, 157, 974-983. https://doi.org/10.1016/j.apenergy.2015.04.010
[13] Sina, N., Esfahanian, V., Hairi Yazdi, M. R., & Azadi, S. (2018). Introducing the modified tire power loss and resistant force regarding longitudinal slip. SAE International Journal of Passenger Cars-Mechanical Systems, 11(2), 167-176. https://doi.org/10.4271/06-11-02-0014
[14] D’ambrosio, S., De Mattei, E., Vitolo, R., & Amati, N. (2021). Automatic adjustment of tire inflation pressure through an intelligent CTIS: Effects on the vehicle lateral dynamic behavior. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 235(14), 3487-3508. https://doi.org/10.11 77/09544070211014292
[15] Sina, N., Hairi Yazdi, M. R., & Esfahanian, V. (2021). Modified Dynamic Model for Longitudinal Motion of Ground Vehicles. International Journal of Automotive and Mechanical Engineering, 18(1), 8550 – 8562. https://doi.org/10.15282/ijame.18.1. 2021.14.0649
[16] Torinsson, J., Jonasson, M., Yang, D., & Jacobson, B. (2020). Energy reduction by power loss minimisation through wheel torque allocation in electric vehicles: a simulation-based approach. Vehicle System Dynamics, 1-24. https://doi.org/10.10 80/00423114.2020.1858121
[17] Nasiri, S., Sina, N., & Rezaei Dasht Arjaneh, J. (2012). Analytical Modeling and Simulation of Tire Non-uniformities. Iranian Rubber Magazine, 16(65), 38. https://www.magiran.com/paper/1018524?lang=en
[18] Sina, N., & Nasiri, S. (2014, February 25-26). Excitation Behavior of Tire and Wheel Assembly Faults in Shape of Non-uniformity in a Vehicle. 8th Condition Monitoring and Fault Diagnosis Conference, Tehran, Iran. https://www. researchgate. net/publication/339181103_Excitation_Behavior_of_Tire_and_ Wheel_ Assembly_ Faults_in_Shape_of_Non-uniformity_in_a_Vehicle
[19] Moaveni, B., Khosravi Roqaye Abad, M., & Nasiri, S. (2015). Vehicle longitudinal velocity estimation during the braking process using unknown input Kalman filter. Vehicle System Dynamics, 53(10), 1373-1392. https://doi.org/10.1080/00423114.20 15.1038279