جعبه‌ابزارهای شبیه‌سازی سیستم‌های دینامیکی برای کنترل‌کننده‌های بهینه مرتبه خطی کسری

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 عضو هیئت علمی، گروه مهندسی برق و کامپیوتر، دانشگاه فنی و حرفه‌ای، تهران، ایران.

2 استادیار، گروه مهندسی مکانیک، دانشگاه فنی و حرفه‌ای، تهران، ایران.

3 استادیار، گروه مهندسی برق و کامپیوتر، دانشگاه فنی و حرفه‌ای، تهران، ایران.

چکیده

امروزه سیستم‌های مرتبه کسری کاربردهای متنوعی در مدل‌سازی پدیده­های گوناگون پیدا کرده­است. همچنین قابلیت­ها و عملکرد طراحی کنترل­کننده­های مرتبه کسری در تحلیل و طراحی سیستم­های خطی و غیرخطی موردتوجه بسیاری از محققان است. در این مقاله مهم‌ترین جعبه­ابزارهای توسعه­یافته برای تحلیل و طراحی سیستم­های مرتبه کسری معرفی گردیده و قابلیت­ها و عملکردشان در تحلیل و طراحی کنترل­کننده­های مرتبه کسری با یکدیگر مقایسه شده است. در این راستا ویژگی­ها و امکانات اساسی چهار جعبه ابزار مختلف بررسی شده است. سپس به کمک سه جعبه‌ابزار، عملکرد دو کنترل­کننده تناسبی، انتگرالی و مشتقی مرتبه کسری (FOPID) بهینه­سازی­شده با الگوریتم فراابتکاری برای پایدارسازی سیستم تنظیم ولتاژ ژنراتور سنکرون و کنترل سرعت موتور جریان مستقیم (DC) بدون جاروبک شبیه­سازی شده­است. نتایج شبیه­سازی­ها نشان می­دهد که نتایج حاصل از این جعبه ابزارها به مقدار بسیار زیاد به الگوریتم­های مورد استفاده­شان بستگی دارد. به‌طوری که نتایج دو جعبه ابزار تابع انتقال مرتبه کسری ((FOTF و جعبه‌ابزار کنترل و مدلسازی مرتبه کسری (FOMCON) به مقدار زیاد شبیه یکدیگر هستند و نتایج جعبه ابزار کنترل غیرصحیح (NINTEGER) به شکل معنی­داری متفاوت است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation Toolboxes of Dynamic Systems for Optimized Fractional Linear Order Controllers

نویسندگان [English]

  • Mohammadreza Modabbernia 1
  • Mojtaba Masoumnezhad 2
  • Alireza Akoushideh 3
1 Faculty Member, Department of Electrical and Computer Engineering, Technical and Vocational University (TVU), Tehran, Iran.
2 Assistant Professor, Department of Mechanical Engineering, Technical and Vocational Universty (TVU), Tehran, Iran.
3 Assistant Professor, Department of Electrical and Computer Engineering, Technical and Vocational Universty (TVU), Tehran, Iran.
چکیده [English]

Today, there is a growing utilization of fractional order systems in the modeling of various phenomena. Furthermore, the capabilities and performance of fractional order controllers in the analysis and design of fractional order systems are of interest to many researchers. In the present research, the most important toolboxes developed for analyzing and designing fractional-order systems were introduced and their capabilities and performance in the analysis and design of fractional order controllers compared. In this regard, the basic features and capabilities of the four different toolboxes were examined. The advantages and disadvantages of each were listed. Then, with the help of three toolboxes, the performance of two fractional-order proportional, integral, and derivative (FOPID) controllers optimized with a meta-heuristic algorithm to stabilize the synchronous generator voltage regulation system and brushless DC motor were simulated. The simulation results showed that the performances of these toolboxes depend to a large extent on their employed algorithms. Thus, the results of Fractional-order Transfer Function (FOTF) and Fractional-order Modelling and Control (FOMCON) toolboxes were very similar and non-integer (NINTEGER) toolbox results were significantly different.

کلیدواژه‌ها [English]

  • Fractional
  • order dynamical system Fractional order controller Optimization
[1] Xue, D., Li, T., & Liu, L. (2017, May 28-30). A MATLAB toolbox for multivariable linear fractional-order control systems. 2017 29th Chinese Control And Decision Conference Chongqing, China https://doi.org/10.1109/CCDC.2017.7978826
[2] Li, C., & Cai, M. (2019). Theory and numerical approximations of fractional integrals and derivatives. SIAM. https://doi.org/10.1137/1.9781611975888
[3] Sabatier, J., Agrawal, O. P., & Machado, J. T. (2007). Advances in fractional calculus. Springer. https://doi.org/10.1007/978-1-4020-6042-7
[4] Debnath, L. (2003). Recent applications of fractional calculus to science and engineering. International Journal of Mathematics and Mathematical Sciences, 54, 3413-3442. https://doi.org/10.1155/S0161171203301486
[5] Caponetto, R. (2010). Fractional order systems: modeling and control applications. World Scientific. https://www.amazon.com/Fractional-order-systems-applications-Scientific/d p/9814304190
[6] Modabbernia, M., & Akoushideh, A. (2020). Voltage Control of The Non-Isolated Buck-Boost DC-DC Converter Based on The Root Locus Method. Karafan Quarterly Scientific Journal, 17(1), 59-84. https://doi.org/10.48301/kssa.2020.112757
[7] Petras, I. (2008). Stability of fractional-order systems with rational orders. arXiv, 12(3), 1-25. https://doi.org/10.48550/arXiv.0811.4102
[8] Hartley, T. T., & Lorenzo, C. F. (2003). Fractional-order system identification based on continuous order-distributions. Signal Processing, 83(11), 2287-2300. https://doi.or g/10.1016/S0165-1684(03)00182-8
[9] Podlubny, I. (1999). Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers. IEEE Transactions on Automatic Control, 44(1), 208-214. https://doi.org/10.1109/9 .739144
[10] Diethelm, K., & Freed, A. D. (1999). On the Solution of Nonlinear Fractional-Order Differential Equations Used in the Modeling of Viscoplasticity. In Scientific Computing in Chemical Engineering II. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-60185-9 _24
[11] Masoumnezhad, M. (2017). Robust control for the indefinite model of the semi-active suspension system. Karafan Quarterly Scientific Journal, 14(2), 57-79. https://karafan.tvu.ac.ir /article_100505_a32e95336945f82418be201fdf9411bb.pdf
[12] Li, Z., Liu, L., Dehghan, S., Chen, Y., & Xue, D. (2017). A review and evaluation of numerical tools for fractional calculus and fractional order controls. International Journal of Control, 90(6), 1165-1181. https://doi.org/10.1080/00207179.2015.1124 290
[13] Val, D., & Costa, J. S. D. (2012). An Introduction to Fractional Control (Control, Robotics and Sensors). The Institution of Engineering and Technology. https://www.amazon.com/Intr oduction-Fractional-Control-Robotics-Sensors/dp/1849195455
[14] Lanusse, P., Malti, R., & Melchior, P. (2013). CRONE control system design toolbox for the control engineering community: tutorial and case study. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1990), 1-14. https://doi.org/10.1098/rsta.2012.0149
[15] Oustaloup, A., Melchior, P., Lanusse, P., Cois, O., & Dancla, F. (2000, September 25-27). The CRONE toolbox for Matlab. CACSD. Conference Proceedings. IEEE International Symposium on Computer-Aided Control System Design (Cat. No.00TH8537), Anchorage, Alaska. https://doi.org/10.1109/CACSD.2000.900210
[16] Malti, R., Melchior, P., Lanusse, P., & Oustaloup, A. (2011). Towards an object oriented CRONE Toolbox for fractional differential systems. IFAC Proceedings Volumes, 44(1), 10830-10835. https://doi.org/10.3182/20110828-6-IT-1002.02443
[17] Chen, Y., Petras, I., & Xue, D. (2009, June 10-12). Fractional order control - A tutorial. 2009 American Control Conference, St. Louis, Missouri, USA https://doi.org/10.11 09/ACC.2009.5160719
[18] Tepljakov, A., Petlenkov, E., & Belikov, J. (2011, June 16-18). FOMCON: Fractional-order modeling and control toolbox for MATLAB. Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2011, Gliwice, Poland. https://ieeexplore.ieee.org/document/6016009
[19] Sikander, A., Thakur, P., Bansal, R. C., & Rajasekar, S. (2018). A novel technique to design cuckoo search based FOPID controller for AVR in power systems. Computers & Electrical Engineering, 70, 261-274. https://doi.org/10.1016/j.compel eceng.2017.07.005
[20] Saadat, H. (2009). Power system analysis (2 ed.). McGraw-Hill Higher Education. https: //scholar.google.com/citations?view_op=view_citation&hl=en&user=X6ja5foAAAAJ&citation_for_view=X6ja5foAAAAJ:9yKSN-GCB0IC
[21] Modabbernia, M., Alizadeh, B., Sahab, A., & Moghaddam, M. M. (2020). Robust control of automatic voltage regulator (AVR) with real structured parametric uncertainties based on H∞ and μ-analysis. ISA Transactions, 100, 46-62. https://doi.org/10.1016/j.isatra.202 0.01.010
[22] Modabbernia, M., Alizadeh, B., Sahab, A., & Mirhosseini Moghaddam, M. (2020). Designing the Robust Fuzzy PI and Fuzzy Type-2 PI Controllers by Metaheuristic Optimizing Algorithms for AVR System. IETE Journal of Research, -(-), 1-15. https://doi.org/10.1080 /03772063.2020.1769510
[23] Agarwal, J., Parmar, G., Gupta, R., & Sikander, A. (2018). Analysis of grey wolf optimizer based fractional order PID controller in speed control of DC motor. Microsystem Technologies, 24(12), 4997-5006. https://doi.org/10.1007/s00542-018 -3920-4
دوره 19، شماره 1 - شماره پیاپی 57
فنی و مهندسی
خرداد 1401
صفحه 263-289
  • تاریخ دریافت: 22 خرداد 1400
  • تاریخ بازنگری: 04 مرداد 1400
  • تاریخ پذیرش: 21 شهریور 1400
  • تاریخ اولین انتشار: 21 شهریور 1400