مطالعه آزمایشگاهی تأثیر الیاف پلی‌پروپیلن بر پارامترهای مقاومتی خاک تثبیت شده با آهک و سیمان

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 عضو هیات علمی، گروه مهندسی عمران، دانشگاه فنی و حرفه ای، تهران، ایران.

2 استاد، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه شهید باهنر، کرمان، ایران.

3 کارشناسی ارشد، گروه مهندسی عمران، دانشگاه فنی و حرفه‌ای، تهران، ایران.

چکیده

به‌منظور مطالعه تأثیر الیاف پلی‌پروپیلن بر رفتار مکانیکی و پارامترهای مقاومتی خاک رس تثبیت‌نشده و تثبیت‌شده با سیمان و آهک نمونه‌هایی در دوازده گروه مختلف با درصدهای مختلف الیاف پلی‌پروپیلن شامل0 درصد، 4/0 درصد، 0/1 درصد، 7/1 درصد و 5/2 درصد (درصدی از وزن خاک خشک)،0 درصد و ۴ درصد سیمان 0 درصد و ۳ درصد آهک ساخته شد. پس از عمل‌آوری نمونه‌ها به مدت ۱۴ و ۲۸ روز در گرمکن با دمای ۳۰ درجه سانتی‌گراد، آزمایش مقاومت فشاری تک‌محوری روی آنها صورت پذیرفت. نتایج آزمایش‌ها نشان داد که وجود الیاف مسلح‌کننده در طرح اختلاط خاک رس تثبیت‌شده و تثبیت‌نشده، سبب افزایش مقاومت فشاری تک‌محوری و نیز کرنش گسیختگی گردیده است و این تأثیر در نمونه‌های تثبیت‌شده نسبت به نمونه‌های تثبیت‌نشده بیشتر است. همچنین مقدار الیاف بهینه که سبب بیشترین مقاومت فشاری تک‌محوری نمونه‌ها شده معادل 4/0 درصد برآورد گردیده است. همچنین نتایج نشان داد وجود الیاف، سبب کاهش مدول الاستیسیته در نمونه‌ها، شکل‌پذیرتر شدن رفتار آنها و مقاومت بیشتر بعد از گسیختگی (تنش تحملی توسط مصالح در کرنش­های بیشتر از کرنش متناظر با گسیختگی آنها نسبت به نمونه­های فاقد الیاف یا دارای میزان الیاف کمتر، بیشتر می‌شود) گردیده است. اندرکنش بین سطوح الیاف با جسم خاک به‌وسیله عکس‌برداری الکترونی روبشی (SEM) بررسی شد. نتایج نشان داد اصطکاک و مقاومت ایجاد شده بین سطوح الیاف و خاک، عامل اصلی تغییر در راستای بهبود رفتار مکانیکی خاک است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Study of the Effect of Polypropylene Fiber on Mechanical Properties of Lime and Cement Stabilized Soil

نویسندگان [English]

  • Mohammad Mostafa Jafari 1
  • MohammadHossein Bagheripour 2
  • Masoud Lakzadeh 3
1 Faculty Member ,Department of Civil Engineering, Technical and Vocational University (TVU), Tehran, Iran.
2 Professor, Department of Civil Engineering, Faculty of Technical and Engineering, Shahid Bahonar University, Kerman, Iran.
3 MSc, Department of Civil Engineering, Technical and Vocational University (TVU), Tehran, Iran.
چکیده [English]

12 groups of soil samples were prepared with various percentage of PP-fiber content (i.e. 0.0%, 0.4%, 1%, 1.7% and 2.5% by weight of soil), cement (i.e. 0% and 4% by weight of soil) as well as lime (0% and 3% by weight of soil) to study the effect of PP-fiber on mechanical behaviour and strength of non-stabilized and stabilized clayey soil with cement and lime. The unconfined compression tests were carried out on samples that were cured at 30°C and kept for 14 and 28 days in oven. The test results showed that inclusion of fiber reinforcement in stabilized and non-stabilized clayey soil mixtures caused an increase in the unconfined compressive strength (UCS) and failure strain. However, such effects were much more evident in stabilized samples when compared with those of non-stabilized samples. Furthermore, maximum unconfined compressive strength of samples was obtained at an optimum percentage of fiber content of 0.4%. The results indicated that the existence of fiber in specimens decreased the stiffness of samples, caused more ductile behaviour and loss of post-peak strength. The interactions at the interface between fiber and soil matrix were studied by using Scanning Electron Microscopy (SEM). The results demonstrated that the friction and bound strength between fiber surface and soil were significantly effective in changing the mechanical behaviour of soil.

کلیدواژه‌ها [English]

  • Soil mixing
  • Soil improvement
  • Fiber
  • Fiber reinforced soil
  • Unconfined compressive strength
[1] Abuel-Naga, H. M., Bergado, D. T., & Chaiprakaikeow, S. (2006). Innovative thermal technique for enhancing the performance of prefabricated vertical drain during the preloading process. Geotextiles and Geomembranes, 24(6), 359-370. https://doi.org /10.1016/j.geotexmem.2006.04.003
[2] Aiban, S. A. (1994). A study of sand stabilization in Eastern Saudi Arabia. Engineering Geology, 38(1), 65-79. https://doi.org/10.1016/0013-7952(94)90025-6
[3] Saberian, M., & Khabiri, M. M. (2018). Effect of oil pollution on function of sandy soils in protected deserts and investigation of their improvement guidelines (case study: Kalmand area, Iran). Environmental Geochemistry and Health, 40(1), 243-254. https://doi.org/10.10 07/s10653-016-9897-y
[4] Chemeda, Y. C., Deneele, D., Christidis, G. E., & Ouvrard, G. (2015). Influence of hydrated lime on the surface properties and interaction of kaolinite particles. Applied Clay Science, 107, 1-13. https://doi.org/10.1016/j.clay.2015.01.019
[5] Dash, S. K., & Hussain, M. (2015). Influence of Lime on Shrinkage Behavior of Soils. Journal of Materials in Civil Engineering, 27(12), 04015041. https://doi.org/doi:10.1061/(ASC E)MT.1943-5533.0001301
[6] Azadegan, O., & Li, J. (2015). Effects of lime and cement treated platform on the behavior of circular footing founded on soft clay. International Journal of Geotechnical Engineering, 9(2), 214-221. https://doi.org/10.1179/1939787914Y.0000000041
[7] Esaifan, M., Khoury, H., Aldabsheh, I., Rahier, H., Hourani, M., & Wastiels, J. (2016). Hydrated lime/potassium carbonate as alkaline activating mixture to produce kaolinitic clay based inorganic polymer. Applied Clay Science, 126, 278-286. https://doi.org/10.1016/j.clay.201 6.03.026
[8] Garzón, E., Cano, M., O`Kelly, B. C., & Sánchez-Soto, P. J. (2016). Effect of lime on stabilization of phyllite clays. Applied Clay Science, 123, 329-334. https://doi.org/10.1016/j.clay.201 6.01.042
[9] Jahandari, S., Toufigh, M. M., Li, J., & Saberian, M. (2018). Laboratory Study of the Effect of Degrees of Saturation on Lime Concrete Resistance Due to the Groundwater Level Increment. Geotechnical and Geological Engineering, 36(1), 413-424. https://doi.org/1 0.1007/s10706-017-0335-4
[10] Jahandari, S., Saberian, M., Tao, Zh., Mojtahedi, S. F., Li, J., Ghasemi, M., Rezvani, S. S., & Li, W. (2019). Effects of saturation degrees, freezing-thawing, and curing on geotechnical properties of lime and lime-cement concretes. Cold Regions Science and Technology, 160(1), 242-251. https://doi.org/10.1016/j.coldregions.2019.02.011
[11] Schnaid, F., Prietto, P. D. M., & Consoli, N. C. (2001). Characterization of Cemented Sand in Triaxial Compression. Journal of Geotechnical and Geoenvironmental Engineering, 127(10), 857-868. https://doi.org/doi:10.1061/(ASCE)1090-0241(200 1)127:10(857)
[12] Park, S-S. (2011). Unconfined compressive strength and ductility of fiber-reinforced cemented sand. Construction and Building Materials, 25(2), 1134-1138. https://doi.org/10.1016/j.co nbuildmat.2010.07.017
[13]  Consoli, N. C., Prietto, P. D. M., & Ulbrich, L. A. (1998). Influence of Fiber and Cement Addition on Behavior of Sandy Soil. Journal of Geotechnical and Geoenvironmental Engineering, 124(12), 1211-1214. https://doi.org/10.1061/(ASCE)10900241(1998)124 :12(1211)
[14] Consoli, N. C., Vendruscolo, M. A., & Prietto, P. D. M. (2003). Behavior of Plate Load Tests on Soil Layers Improved with Cement and Fiber. Journal of Geotechnical and Geoenvironmental Engineering, 129(1), 96-101. https://doi.org/10.1061/(ASCE)10 90-0241(2003)129:1(96)
[15] Kaniraj, S. R., & Havanagi, V. G. (2001). Behavior of Cement-Stabilized Fiber-Reinforced Fly Ash-Soil Mixtures. Journal of Geotechnical and Geoenvironmental Engineering, 127(7), 574-584. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:7(5)
[16] Maher, M., & Ho, Y. (1993). Behavior of fiber-reinforced cemented sand under static and cyclic loads. Geotechnical Testing Journal, 16(3), 330-338. https://doi.org/10.1 520/GTJ10054J
[17] Tang, C., Shi, B., Gao, W., Chen, F., & Cai, Y. (2007). Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes, 25(3), 194-202. https://doi.org/10.1016/j.geotexmem.2006.11.002
[18] Park, S-S. (2009). Effect of fiber reinforcement and distribution on unconfined compressive strength of fiber-reinforced cemented sand. Geotextiles and Geomembranes, 27(2), 162-166. https://doi.org/10.1016/j.geotexmem.2008.09.001
[19] Shukla, S. K. (2017). Fundamentals of fibre-reinforced soil engineering. Springer Singapore. https://doi.org/10.1007/978-981-10-3063-5
[20] Falorca, I., & Pinto, M. (2011). Effect of short, randomly distributed polypropylene microfibres on shear strength behaviour of soils. Geosynthetics International, 18(1), 2-11. https://doi.or g/10.1680/gein.2011.18.1.2
[21] Jafari, M., & Esna-ashari, M. (2012). Effect of waste tire cord reinforcement on unconfined compressive strength of lime stabilized clayey soil under freeze–thaw condition. Cold Regions Science and Technology, 82, 21-29. https://doi.org/10.1016/j.coldregions.2012 .05.012
[22] Hamidi, A., & Hooresfand, M. (2013). Effect of fiber reinforcement on triaxial shear behavior of cement treated sand. Geotextiles and Geomembranes, 36, 1-9. https://doi.org/10.1016 /j.geotexmem.2012.10.005
[23] Botero, E., Ossa, A., Sherwell, G., & Ovando-Shelley, E. (2015). Stress–strain behavior of a silty soil reinforced with polyethylene terephthalate (PET). Geotextiles and Geomembranes, 43(4), 363-369. https://doi.org/10.1016/j.geotexmem.2015.04.003
[24] Saghari, S., Bagheri, G., & Shabanzadeh, H. (2015). Evaluation of permeability characteristics of a polymer fibers-reinforced soil through laboratory tests. Journal of the Geological Society of India, 85(2), 243-246. https://doi.org/10.1007/s12594-015-0210-y
[25] Hidalgo Signes, C., Garzón-Roca, J., Martínez Fernández, P., Garrido de la Torre, M. E., & Insa Franco, R. (2016). Swelling potential reduction of Spanish argillaceous marlstone Facies Tap soil through the addition of crumb rubber particles from scrap tyres. Applied Clay Science, 132-133, 768-773. https://doi.org/10.1016/j.clay.2016. 07.027
[26] Butt, W. A., Mir, B. A., & Jha, J. N. (2016). Strength Behavior of Clayey Soil Reinforced with Human Hair as a Natural Fibre. Geotechnical and Geological Engineering, 34(1), 411-417. https://doi.org/10.1007/s10706-015-9953-x
[27]  Gelder, C., & Fowmes, G. J. (2016). Mixing and compaction of fibre-and lime-modified cohesive soil. Proceedings of the Institution of Civil Engineers-Ground Improvement, 169(2), 98-108. https://doi.org/10.1680/grim.14.00025
[28] Wei, L., Chai, S. X., Zhang, H. Y., & Shi, Q. (2018). Mechanical properties of soil reinforced with both lime and four kinds of fiber. Construction and Building Materials, 172, 300-308. https://doi.org/10.1016/j.conbuildmat.2018.03.248
[29] Duan, X-l., & Zhang, J-s. (2019). Mechanical Properties, Failure Mode, and Microstructure of Soil-Cement Modified with Fly Ash and Polypropylene Fiber. Advances in Materials Science and Engineering, 2019(2), 1-13. https://doi.org/10.1155/2019/9561794
[30] Valipour, M., Shourijeh, P. T., & Mohammadinia, A. (2021). Application of recycled tire polymer fibers and glass fibers for clay reinforcement. Transportation Geotechnics, 27, 100474. https://doi.org/10.1016/j.trgeo.2020.100474
[31] Saberian, M., Li, J., Kilmartin-Lynch, S., & Boroujeni, M. (2021). Repurposing of COVID-19 single-use face masks for pavements base/subbase. Science of The Total Environment, 769(112), 145527. https://doi.org/10.1016/j.scitotenv.2021.145527
[32] Tang, L., Cong, S., Geng, L., Ling, X., & Gan, F. (2018). The effect of freeze-thaw cycling on the mechanical properties of expansive soils. Cold Regions Science and Technology, 145, 197-207. https://doi.org/10.1016/j.coldregions.2017.10.004
[33] Li, L., Shao, W., Li, Y., & Cetin, B. (2015). Effects of Climatic Factors on Mechanical Properties of Cement and Fiber Reinforced Clays. Geotechnical and Geological Engineering, 33(3), 537-548. https://doi.org/10.1007/s10706-014-9838-4
[34] Karaca, Z., & Onargan, T. (2012). A new approach to stone deformation: stone deformability index. Proceedings of the Institution of Civil Engineers-Construction Materials, 165(3), 189-195. https://doi.org/10.1680/coma.9.00031