بررسی خواص مکانیکی نانوکامپوزیت‌های PA6/NBR/Graphene با روش پاسخ سطح

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 استادیار، گروه طراحی کاربردی، دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی، تهران، ایران.

2 دانشجوی کارشناسی ارشد، گروه طراحی کاربردی، دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی، تهران، ایران.

چکیده

در این مقاله، امکان‌سنجی تولید نانوکامپوزیت‌های پلی‌آمید/ آکریلونیتریل بوتادین/ گرافن /NBR/Graphene 6PA) با استفاده از میکسر داخلی بررسی شده است. با استفاده از روش پاسخ سطح تأثیر درصد لاستیک نیتریل و گرافن بر مدول کششی و سختی این مواد بررسی گردید. با استفاده از جدول آنالیز واریانس، تأثیر پارامترها ورودی و مدل‌های ریاضی مطالعه شد. خواص مکانیکی و ریزساختار نانوکامپوزیت‌ها با استفاده از آزمون کشش، آزمون سختی و میکروسکوپ الکترونی روبشی بررسی گردید. مقایسه نتایج روش سطح پاسخ با نتایج تجربی، درصد خطای کمی را نشان داد. نتایج نشان داد که در درصدهای مختلف نیتریل، با افزایش گرافن از 0 تا 2 درصد، مدول کششی و سختی افزایش می‌یابد و بیشترین مدول کششی (MPa2354) و سختی ( shore A111) در گرافن 2 درصد و 20 درصد نیتریل به‌دست خواهد آمد. در درصدهای پایین نانوذرات گرافن، افزایش مقدار NBR باعث کاهش بیشتر مدول خواهد شد؛ به‌طوری که در 5/0 درصد گرافن با افزایش NBR از 20 تا 40 درصد، مدول از 2229 به  MPa 1859 کاهش می‌یابد. در حالی که برای 5/1 درصد گرافن، افزایش NBR منجر به کاهش مدول از 2354 به  MPa2164 خواهد شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Investigation on Mechanical Properties of PA6/NBR/Graphene Nanocomposite by Response Surface Methodology

نویسندگان [English]

  • Mohammad Reza Nakhaei 1
  • Ali Ghorbankhan 2
1 Assistant Professor, Department of Applied Design, Faculty of Mechanic and Energy, Shahid Beheshti University, Tehran, Iran.
2 MSc. Student, Department of Applied Design, Faculty of Mechanic and Energy, Shahid Beheshti University, Tehran, Iran.
چکیده [English]

In this paper, the feasibility study of the production of PA6/NBR/Graphene nanocomposite by an internal mixer was investigated. The effect of nitrile and graphene content on modulus strength and hardness was studied by response surface methodology. Analysis of variance was used to study the effect of input parameters and mathematical models. The mechanical properties and microstructure were investigated by tensile test, hardness, and scanning electron microscopy. The comparison of the experimental results and response surface methodology results showed a small percentage of error. The results show that at the different percentage of NBR content, modulus strength and hardness increased with an increase in graphene content at 0 to 2 wt% and the maximum modulus strength (2354 MPa) and hardness (111 shore A) was obtained at the graphene content of 2 % and nitrile content of 20 %. At a low percentage of graphene nanoparticle, an increase in the NBR content lead to a higher decrease of modulus strength so that in graphene content of 0.5%, with increasing NBR content from 20 % to 40 %, modulus strength decreased from 2229 to 1859 MPa. However, for graphene content of 1.5 %, increasing the NBR content lead to decreases of modulus strength from 2354 to 2164 MPa.

کلیدواژه‌ها [English]

  • Nanocomposite
  • Polyamide/ Nitrile Butadiene Rubber/ Graphene
  • Tensile test
  • Hardness test
  • Scanning electron microscopy
[1] Azdast, T., & Hasanzadeh, R. (2018). Tensile and morphological properties of microcellular polymeric nanocomposite foams reinforced with multi-walled carbon nanotubes. International Journal of Engineering, 31(3), 504-510.
[2] Fakirov, S. (2006). Handbook of condensation thermoplastic elastomers. John Wiley & Sons. https://onlinelibrary.wiley.com/doi/book/10.1002/3527606610
[3] Amin, S., & Amin, M. (2011). Thermoplastic elastomeric (TPE) materials and their use in outdoor electrical insulation. Rev. Adv. Mater. Sci, 29(1), 30-115.
[4] Lim, S.-H., Dasari, A., Yu, Z.-Z., Mai, Y.-W., Liu, S., & Yong, M. S. (2007). Fracture toughness of nylon 6/organoclay/elastomer nanocomposites. Composites Science and Technology, 67(14), 2914-2923. https://doi.org/10.1016/j.compscitech.2007.05.007
[5] Yasemian, A. R. (2018). Synthesis of Iron Oxide Nanoparticles and Evaluation of the Effect of Concentration on Magnetic Hyperthermia. Karafan Quarterly Scientific Journal, 15(44), 127-136.
[6] Asadi Boroojeni, B., & Mozafari Vanani, L. (2020). The effect of tool geometry on the tensile strength of polypropylene Components Welded by Friction Stir Welding Method. Karafan Quarterly Scientific Journal, 17(1), 143-155. https://doi.org /10. 48301/kssa.2020.112761
[7] Fagundes, E., & Jacobi, M. A. (2012). PA/NBR TPVs: crosslink system and properties. Polímeros, 22(2), 206-212. https://doi.org/10.1590/S0104-14282012005000021
[8]Mahallati, P., Arefazar, A., & Naderi, G. (2010). Thermoplastic elastomer nanocomposites based on PA6/NBR. International Polymer Processing, 25(2), 132-138. https://doi.org/10.3139/217.2311
[9] Mehrabzadeh, M., & Delfan, N. (2000). Thermoplastic elastomers of butadiene‐acrylonitrile copolymer and polyamide. Vi. Dynamic crosslinking by different systems. Journal of applied polymer science, 77(9), 2057-2066. https://doi.org/10.1002/1097-4628(20000829)
[10] Taghizadeh, E., Naderi, G., & Razavi-Nouri, M. (2011). Effects of organoclay on the mechanical properties and microstructure of PA6/ECO blend. Polymer Testing, 30(3), 327-334. https://doi.org/10.1016/j.polymertesting.2011.01.007
[11] Ghasemi, F. A., Daneshpayeh, S., Ghasemi, I., & Ayaz, M. (2016). An investigation on the Young’s modulus and impact strength of nanocomposites based on polypropylene/linear low-density polyethylene/titan dioxide (PP/LLDPE/TiO 2) using response surface methodology. Polymer Bulletin, 73(6), 1741-1760. https://doi.org/10.1007/s00289-015-1574-2
[12] Moghri, M., Zanjanijam, A. R., Seifi, L., & Ramezani, M. (2017). An investigation on rheological behavior of the PVC/NBR/Nanoclay nanocomposites by torque rheometry: the effects of formulation variables using response surface approach. Journal of Inorganic and Organometallic Polymers and Materials, 27(1), 264-273. https://doi.org/10.1007/s10904-017-0682-x
[13] Nakhaei, M. R., Naderi, G., & Ebrahimpour, A. (2020). Mathematical modeling of mechanical properties of PA6/NBR/Clay Nanocomposites Fabrication using the Thermal Friction Stirs Processing. Journal of Science and Technology of Composites, 7(2), 833-842. https://doi.org/10.22068/jstc.2020.112864.1582
[14] Mostafapour, A., Akbari, A., & Nakhaei, M. (2017). Application of response surface methodology for optimization of pulsating blank holder parameters in deep drawing process of Al 1050 rectangular parts. The International Journal of Advanced Manufacturing Technology, 91(1-4), 731-737. https://doi.org/10.1007/ s00170-016-9781-z
[15] Mostafapour, A., Naderi, G., & Nakhaei, M. R. (2018). Effect of process parameters on fracture toughness of PP/EPDM/nanoclay nanocomposite fabricated by novel method of heat assisted friction stir processing. Polymer Composites, 39(7), 2336-2346. https://doi.org/10.1002/pc.24214
[16] Zhang, Y., Zhang, X., Yang, L., & Yu, X. (2019). Optimization design for downhole dynamic seal based on response surface method. Advances in Mechanical Engineering, 11(2), 1687814019828441. https://doi.org/10.1177/1687814019828441
[17] Kumar, N., & Bandyopadhyay, A. (2017). Simulation of the Effects of Input Parameters on Weld Quality in Laser Transmission Welding (LTW) Using a Combined Response Surface Methodology (RSM)-Finite Element Method (FEM) Approach. Lasers in Engineering (Old City Publishing), 36(4), 225-243.
[18] Mamaghani Shishavan, S., Azdast, T., Mohammadi Aghdam, K., Hasanzadeh, R., Moradian, M., & Daryadel, M. (2018). Effect of different nanoparticles and friction stir process parameters on surface hardness and morphology of acrylonitrile butadiene styrene. International Journal of Engineering, 31(7), 1117-1122. https://doi.org/10.5829/ije.2018.31.07a.16
[19] Paran, S. M. R., Naderi, G., Ghoreishy, M. H. R., & Dubois, C. (2018). Essential work of fracture and failure mechanisms in dynamically vulcanized thermoplastic elastomer nanocomposites based on PA6/NBR/XNBR-grafted HNTs. Engineering Fracture Mechanics, 200, 251-262. https://doi.org/10.1016/j.engfracmech.2018.07.018
[20] Taghizadeh, E., Naderi, G., & Dubois, C. (2010). Rheological and morphological properties of PA6/ECO nanocomposites. Rheologica acta, 49(10), 1015-1027. https://doi.org/10.1007/s00397-010-0476-3
[21] Paran, S. M. R., Naderi, G., & Ghoreishy, M. H. R. (2016). Effect of halloysite nanotube on microstructure, rheological and mechanical properties of dynamically vulcanized PA6/NBR thermoplastic vulcanizates. Soft Materials, 14(3), 127-139. https://doi.org/10.1080/1539445X.2016.1157694
[22] Nakhaei, M. R., & Naderi, G. (2020). Modeling and Optimization of Mechanical Properties of PA6/NBR/Graphene Nanocomposite Using Central Composite Design. International Journal of Engineering, 33(9), 1803-1810. https://doi.org/ 10.5829/ije.2020.33.09c.15
[23] Gaitonde, V. N., Karnik, S. R., & Davim, J. P. (2009). Some Studies in Metal Matrix Composites Machining using Response Surface Methodology. Journal of Reinforced Plastics and Composites, 28(20), 2445-2457. https://doi.org/10.1177/ 0731684408092375
[24] Esmizadeh, E., Irani, A., Naderi, G., Ghoreishy, M. H. R., & Dobious, C. (2018). Effect of carbon nanotube on PA6/ECO composites: Morphology development, rheological, and thermal properties. Journal of applied polymer science, 135(12), 459-477. https://doi.org/10.1002/app.45977