تحلیل و اجرای روش حذف مؤلفه‌های هارمونیک ژنراتور سنکرون با بارهای غیرخطی

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسنده

استادیار، گروه مهندسی برق، دانشگاه فنی و حرفه‌ای، تهران، ایران.

چکیده

شکل موج ولتاژ تولیدی در ترمینال ژنراتورهای سنکرون غالباً غیرسینوسی می‌باشد و در صورتی­که بارهای مصرفی از نوع غیرخطی به آن متصل گردد ولتاژ غیرسینوسی دوسر بار ایجاد می‌گردد که باعث کاهش کیفیت توان در مصرف‌کنندگان می‌شود. در این شرایط، وجود مؤلفه‌های هارمونیک باعث پدیدآمدن آثار مخربی از جمله افزایش تلفات، نوسانات فرکانس و کاهش پایداری شبکه خواهد شد. در این مقاله به بررسی مؤلفه‌های مختلف هارمونیکی و اهمیت آن در ژنراتور‌های الکتریکی متصل به شبکه محلی بر پایه تمرکز بر سیم‌پیچی‌های متداول در بارهای غیرخطی پرداخته می‌شود. سپس با اتصال بارهای مختلف غیرخطی به ژنراتور سنکرون یک و سه لایه، آثار مؤلفه‌های هارمونیکی ولتاژ و جریان به‌صورت عملی آزمایش شده است. لامپ کم‌مصرف، موتور القایی سه فاز و لامپ رشته‌ای متصل به پل دیود (استفاده از قطعات الکترونیک قدرت) به‌عنوان سه بار الکتریکی غیرخطی در این مقاله آزمایش شدند. در نهایت نتایج به‌دست‌آمده، با محاسبه THD  حالات مختلف آزمایش­های انجام شده بر دو طرح (طرح سیم‌پیچی سه لایه به‌جای سیم‌پیچی یک لایه) موردنظر ارزیابی شد. با مقایسه تی اچ دی به‌دست‌آمده از آزمایش‌ها، برتری طرح سیم‌پیچی سه لایه نسبت به طرح متعارف می­باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis and Implementation of Harmonic Elimination of a Synchronous Generator Supplying Nonlinear Loads

نویسنده [English]

  • Hossein Asgharpour-Alamdari
Assistant Professor, Department of Electrical Engineering, Technical and Vocational University (TVU), Tehran, Iran.
چکیده [English]

One The generation of sinusoidal voltage in terminal of synchronous generators is often non-sinusoidal due to the connection of non-linear loads to it. Under these conditions, the flowing current and voltage waveforms would considerably be affected. This would ultimately result in destructive effects such as increased losses, frequency fluctuations, reduced grid stability as well as reduced power quality of the load. Accordingly, this paper examines the various harmonic components and their impact on synchronous generators with conventional windings feeding nonlinear local loads. The consequences of the harmonic contents of the output waveforms by varying nonlinear loads were tested practically by implementing the single and triple layer winding synchronous generators. Then, the energy-saving lightbulb, the three-phase induction motor, and the incandescent lamp connected to the diode bridge (using power electronic components) were utilized as three non-linear electrical charges. Finally, the obtained results were evaluated by calculating the THD of the different states of the experiments performed on the two designs (three-layer winding design instead of one-layer winding). By comparing the experimental THD, the three-layer winding design was superior to the conventional one.

کلیدواژه‌ها [English]

  • Synchronous generators Non
  • linear loads Power networks Harmonic contents THD
[1] Liengpradis, P., & Kinnares, V. (2013, Oct 26-29). Active power control of single-phase grid-connected system supplying nonlinear load. 2013 International Conference on Electrical Machines and Systems (ICEMS), Busan, Korea (South) https://ieeexplore.ieee.org/abstract/document/6713323
[2] Tomy, G., & Menon, D. (2016, March 3-5 ). Power quality improvement strategy for non-linear load in single phase system. 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) ,Chennai, India https://ieeexplore.ieee.org/abstract/document/7755353
[3] Brusilowicz, B., Szafran, J., & Wisniewski, G. (2016, March 7-10 ). Reactive power compensation of nonlinear load. 13th International Conference on Development in Power System Protection 2016 (DPSP), Edinburgh, UK. https://digital-library.theiet.org/content/conferences/10.1049/cp.2016.0095
[4] Sandoval, G. (2014). Power Factor in Electrical Power Systems with Non-Linear Loads. ARTECHE/INELAP SA
[5] Brociek, W., Grzywacz, T., & Wilanowicz, R. (2017, Sept 11-13 ). Propagation of higher harmonics of voltage and current in the power system at changing location of nonlinear load. 2017 18th International Conference on Computational Problems of Electrical Engineering (CPEE), Kutna Hora, Czech Republic https://ieeexplore.ieee.org/abstract/document/8093075
[6] Lai, H., Lin, W., & Pu, G. (2020, June 27-29). Harmonic Loss Analysis of Three-phase Induction Motor Sine Winding. 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China https://ieeexplore.ieee.org/abstract/document/9182571
[7] Biricik, S., & Özerdem, Ö. C. (2011, May 8-11). Experimental study and comparative analysis of transformer harmonic behaviour under linear and nonlinear load conditions. 2011 10th International Conference on Environment and Electrical Engineering, Rome, Italy https://ieeexplore.ieee.org/abstract/document/5874818
[8] Sikora, R., Markiewicz, P., & Pabjańczyk, W. (2017, Sept 14-16 ). Surface polynomial fitting of controlled single-phase nonlinear load of input current total harmonic distortion. 2017 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF) Book of Abstracts, Lodz, Poland https://ieeexplore.ieee.org/abstract/document/8090732
[9] Sikora, R., Markiewicz, P., & Pabjańczyk, W. (2018). Multivariable polynomial fitting of controlled single-phase nonlinear load of input current total harmonic distortion. Open Physics, 16(1), 137-142. https//:doi.org/doi.org/10.1515/phys-2018-0021
[10] Nikum, K., Saxena, R., & Wagh, A. (2016, Nov 25-27). Harmonic analysis of residential load based on power quality. 2016 IEEE 7th Power India International Conference (PIICON), Bikaner, India. https://ieeexplore.ieee.org/abstract/ document/8077306
[11] Sun, Y., Xie, X., Zhang, L., & Li, S. (2020). A Voltage Adaptive Dynamic Harmonic Model of Nonlinear Home Appliances. IEEE Transactions on Industrial Electronics, 67(5), 3607-3617. https://doi.org/10.1109/TIE.2019.2921261
[12] Asad, B., Vaimann, T., Belahcen, A., Kallaste, A., Rassõlkin, A., & Iqbal, M. N. (2020). Modified winding function-based model of squirrel cage induction motor for fault diagnostics. IET Electric Power Applications, 14(9), 1722-1734 .
[13] Kutt, F., Michna, M., Kostro, G., & Ronkowski, M. (2017). Modelling of steady state and transient performance of the synchronous generator considering harmonic distortions caused by non-uniform saturation of the pole shoe. Electric Power Systems Research ,143 ,409 -414 .https://doi.org/10.1016/j.epsr.2016.10.030
[14] Yokoi, Y., Higuchi, T., & Miyamoto, Y. (2016). General formulation of winding factor for fractional-slot concentrated winding design. IET Electric Power Applications, 10(4), 231-239 .
[15] Asgharpour-Alamdari, H., Alinejad-Beromi, Y., & Yaghobi, H. (2017). Reduction in distortion of the synchronous generator voltage waveform using a new winding pattern. IET Electric Power Applications, 11(2), 233-241. https://doi.org/10.1049/ iet-epa.2016.0502
[16] Asgharpour-Alamdari, H., Alinejad-Beromi, Y., & Yaghobi, H. (2018). Improvement of induction motor operation using a new winding scheme for reduction of the magnetomotive force distortion. IET Electric Power Applications, 12(3), 323-331 .
[17] Tang ,N., & Brown, I. P. (2018). Framework and Solution Techniques for Suppressing Electric Machine Winding MMF Space Harmonics by Varying Slot Distribution and Coil Turns. IEEE Transactions on Magnetics, 54, 1-12. https://doi.org/10. 1109/TMAG.2018.2804897
[18] Scuiller, F. (2020). General, compact and easy-to-compute winding factor formulation. IET Electric Power Applications, 14(8), 1430 – 1437. https://doi.org/10.1049/iet-epa.2019.0950
[19] Caruso, M., Di Tommaso, A. O., Marignetti, F., Miceli, R., & Ricco Galluzzo, G. (2018). A general mathematical formulation for winding layout arrangement of electrical machines. Energies, 11(2), 446. https://doi.org/10.3390/en11020446
[20] Tommaso, A. O. D., Genduso, F., & Miceli, R. (2015). A New Software Tool for Design, Optimization, and Complete Analysis of Rotating Electrical Machines Windings. IEEE Transactions on Magnetics, 51(4), 1-10. https://doi.org/10.1109/ TMAG.2014.2369860
[21] Z. Q. Li. (2019). Application of sine winding technology in the design of explosion-proof motor products. Internal Combustion Engines and Accessories, 5, 197-198 .