حل عددی جدایش لایه مرزی در کانال واگرا سه‌بعدی تحت تأثیر میدان مغناطیسی غیریکنواخت

نوع مقاله : مقاله پژوهشی (نظری)

نویسندگان

1 استادیار، گروه مهندسی مکانیک، واحد قائم شهر، دانشگاه آزاد اسلامی، قائم شهر، ایران.

2 دانشیار، گروه مهندسی مکانیک، واحد ساری، دانشگاه آزاد اسلامی، ساری، ایران.

3 دکتری، گروه مهندسی مکانیک، دانشگاه فنی و حرفه ای، تهران، ایران.

4 عضو هیئت علمی، گروه مهندسی مکانیک، دانشگاه فنی و حرفه ای، تهران، ایران.

چکیده

در این تحقیق، تأثیر میدان مغناطیسی غیریکنواخت بر رفتار جریان سیال و پدیده جدایش در یک کانال واگرا سه‌بعدی به‌صورت عددی بررسی شده است. معادلات حاکم شامل پیوستگی و مومنتم تعمیم‌یافته برای جریان سیال آرام، پایدار و تراکم‌ناپذیر است. به‌منظور مدل‌سازی و حل عددی به روش حجم محدود، از نرم‌افزار متن باز اوپن­فوم برای کانال واگرای سه‌بعدی تحت تأثیر میدان مغناطیسی متغیر استفاده شده است. بررسی نتایج نشان می­دهد در غیاب میدان مغناطیسی و در رینولدز 250، بدون اعمال میدان مغناطیسی، جدایش در دیواره­های بالا و پایین کانال واگرا ایجاد می­شود. با اعمال میدان مغناطیسی مشاهده می­گردد که جدایش لایه مرزی به تأخیر خواهد افتاد. مشاهده گردید که با افزایش عدد هارتمن تا چهار، پدیده جدایش کاملاً حذف می‌شود و از بین می­رود. در شرایط مشابه نشان داده شد هراندازه به دیواره جانبی نزدیک شویم، جدایش لایه مرزی زودتر رخ خواهد داد و با کاهش عدد رینولدز به 33/208، جدایش لایه مرزی نسبت به ورودی کانال، دیرتر اتفاق خواهد افتاد. همچنین مشخص گردید اگر پهنای کانال بیش از 10 برابر ارتفاع کانال در نظر گرفته شود، تأثیر دیواره‌های جانبی ناچیز است و نتایج جدایش در جریان سه‌بعدی همانند جریان دوبعدی خواهد شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Investigation of Boundary Layer Separation in a 3-D Divergent Channel under the influence of a non-Uniform Magnetic Field

نویسندگان [English]

  • Seyed Morteza Moghimi 1
  • Mehran Khaki Jamei 2
  • Morteza Abbasi 2
  • Mohammad Hasan Taheri 3
  • Nematollah Askari 4
1 Assistant Professor, Department of Mechanical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.
2 Associate Professor, Department of Mechanical Engineering, Sari Branch, Islamic Azad University, Sari, Iran.
3 PhD, Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran.
4 Faculty Member, Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran.
چکیده [English]

In the present research, the non-uniform magnetic field effect on separation phenomenon in divergent channels was investigated numerically. The governing equations, including continuity and momentum equations, were presented and simplified for the laminar, steady, and incompressible flow; then, a non-uniform magnetic field was applied to the flow. Hence, the finite volume method using the OpenFOAM CFD toolbox was employed and a code for 3-D divergent channel flow under a non-uniform magnetic field developed. The effect of non-uniform magnetic field intensity on the boundary layer separation phenomenon on the divergent channel wall was investigated. The results show that the separation in the flow without applying a magnetic field occurs in Re=250 on the channel's upper (lower) wall. By applying the magnetic field and increasing the Hartmann, the boundary layer separation was delayed and in Ha equals 4, the separation is completely deleted and not observed. Under the same conditions, near the sidewalls, the separation occurs sooner than the channel entrance. Furthermore, by reducing the Reynolds to 208.33, the separation occurs late. In a 3-D channel that has a width ten times bigger than its height, the separation points far from the side walls are almost the same as a 2-D channel.

کلیدواژه‌ها [English]

  • Boundary layer separation 3
  • D divergent channel Non
  • uniform magnetic field OpenFoam Magnetohydrodynamics
[1] Li, A., Yang, C., Ren, T., Bao, X., Qin, E., & Gao, R. (2017). PIV experiment and evaluation of air flow performance of swirl diffuser mounted on the floor. Energy and Buildings, 156, 58-69. https://doi.org/10.1016/j.enbuild.2017.09.045
[2] Abbasi, M., Domiri Ganji, D., & Taeibi Rahni, M. (2014). MHD flow in a channel using new combination of order of magnitude technique and HPM. Tehnički vjesnik, 21(2), 317-321.
[3] Al-Habahbeh, O. M., Al-Saqqa, M., Safi, M., & Abo Khater, T. (2016). Review of magnetohydrodynamic pump applications. Alexandria Engineering Journal, 55(2), 1347-1358. https://doi.org/10.1016/j.aej.2016.03.001
[4] Afsahi, M. M., & Cheraghi Sepahvand, T. (2018). T-history: A simple and cost effective method for determining thermal properties of phase change materials (PCMs). Karafan Quarterly Scientific Journal, 15(44), 13-26.
[5] Ghadikolaei, S. S., Hosseinzadeh, K., Ganji, D. D., & Jafari, B. (2018). Nonlinear thermal radiation effect on magneto Casson nanofluid flow with Joule heating effect over an inclined porous stretching sheet. Case Studies in Thermal Engineering, 12, 176-187. https://doi.org/10.1016/j.csite.2018.04.009
[6] JAMEI, M. K., KHAZAYINEJAD, M., & GANJI, D. D. (2014). New results for boundary layer flow and convection heat transfer over a flat plate by using the homotopy perturbation method. Walailak Journal of Science and Technology (WJST), 11(4), 325-340. https://doi.org/10.2004/wjst.v11i4.498
[7] Taheri, M. H., Abbasi, M., & Jamei, M. K. (2017). An integral method for the boundary layer of MHD non-Newtonian power-law fluid in the entrance region of channels. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(10), 4177-4189. https://doi.org/10.1007/s40430-017-0887-5
[8] Askari, N., & Taheri, M. H. (2020). Numerical Investigation of a MHD Natural Convection Heat Transfer Flow in a Square Enclosure with Two Heaters on the Bottom Wall. Karafan Quarterly Scientific Journal, 17(1), 101-121. https://doi.org/10.48301/kssa.2020.112759
[9] Ganesh, N. V., Al-Mdallal, Q. M., & Kameswaran, P. K. (2019). Numerical study of MHD effective Prandtl number boundary layer flow of γ Al2O3 nanofluids past a melting surface. Case Studies in Thermal Engineering, 13, 100413. https://doi.org/10.1016/j.csite.2019.100413
[10] Mohebujjaman, M. (2017). Efficient numerical methods for magnetohydrodynamic flow. [Clemson University]. Upstate South Carolina. https://www.proquest.com/ openview/693e9e1eb3663ef79da13c14e80ff494/1?pq-origsite=gscholar&cbl= 18750
[11] Chen, H., Zhou, T., Yang, Z., Lü, R., Zhu, Z., & Ni, M. (2010). Magnetohydrodynamic experimental design and program for Chinese liquid metal LiPb experimental loop Dragon-Iv. Fusion Engineering and Design, 85(10), 1742-1746. https://doi.org/10.1016/j.fusengdes.2010.05.033
[12] Picologlou, B., & Reed, C. (1989). Experimental investigation of 3-D MHD flows at high Hartmann number and interaction parameter. In Liquid Metal Magnetohydrodynamics (pp. 71-77). Springer. https://doi.org/10.1007/978-94-009-0999-1_9
[13] Axford, W. I. (1961). The Magnetohydrodynamic Jeffrey-Hamel Problem For A Weakly Conducting Fluid. The Quarterly Journal of Mechanics and Applied Mathematics, 14(3), 335-351. https://doi.org/10.1093/qjmam/14.3.335
[14] Dennis, B. H., & Dulikravich, G. S. (2001). Optimization of magneto-hydrodynamic control of diffuser flows using micro-genetic algorithms and least-squares finite elements. Finite Elements in Analysis and Design, 37(5), 349-363. https://doi.org/ 10.1016/S0168-874X(00)00052-4
[15] Matsuo, T., Ishikawa, M., & Umoto, J. (1994). Numerical analysis of bifurcation phenomena in supersonic MHD generator with supersonic diffuser. Energy Conversion and Management, 35(6), 507-516. https://doi.org/10.1016/0196-8904(94)90092-2
[16] Alam, M. S., Khan, M., & Rahman, M. (2013). Critical analysis of the influence of magnetic Reynolds number on MHD Jeffery-Hamel flows. Int. J. of Appl. Math and Mech., 9(5), 31-46.
[17] Moghimi, S., domiri ganji, D., Soleimani, S., Ghasemisahebi, E., & Bararnia, H. (2011). Application of homotopy analysis method to solve MHD Jeffery–Hamel flows in non-parallel walls. Advances in Engineering Software, 42(3), 108-113. https://doi.org/10.1016/j.advengsoft.2010.12.007
[18] Bobashev, S., Erofeev, A., Lapushkina, T. y., Poniaev, S., Vasil'eva, R., & Van Wie, D. (2002, Sept 29-oct 4). Effect of MHD-interaction in various parts of diffuser on inlet shocks: Experiment. AIAA/AAAF 11th International Space Planes and Hypersonic Systems and Technologies Conference, Orleans, France. https://arc.aiaa.org/doi/abs/10.2514/6.2002-5183
[19] Murakami, T., & Okuno, Y. (2013, June 27-30). Experiment and simulation of MHD power generation using convexly divergent channel. 42nd AIAA plasmadynamics and lasers conference in conjunction with the 18th international conference on MHD Energy Conversion (ICMHD), Honolulu, Hawaii. https://arc.aiaa.org/doi/ abs/10.2514/6.2011-3287
[20] Makinde, O. D. (2008). Effect of arbitrary magnetic Reynolds number on MHD flows in convergent‐divergent channels. International Journal of Numerical Methods for Heat & Fluid Flow, 18(6), 697-707. https://doi.org/10.1108/09615530810885524
[21] Ahmad, I., Ilyas, H., & Bilal, M. (2014). Numerical solution for nonlinear MHD Jeffery-Hamel blood flow problem through neural networks optimized techniques. J. Appl. Environ. Biol. Sci, 4(75), 33-43.
[22] Ananthaswamy, V., & Yogeswari, N. (2016). A study on mhd jeffery–hamel flow in nanofluids using new homotopy analysis method. International Journal of Scientific Research and Modern Education, 1(1), 2455-5630.
[23] Nourazar, S. S., Nazari-Golshan, A., & Soleymanpour, F. (2018). On the expedient solution of the magneto-hydrodynamic Jeffery-Hamel flow of Casson fluid. Scientific Reports, 8(1), 1-16. https://doi.org/10.1038/s41598-018-34778-w
[24] Xisto, C., Páscoa, J., Oliveira, P., & Nicolini, D. (2010). Implementation Of A 3d Compressible Mhd Solver Able To Model Transonic Flows. In V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010 (pp. 13). https://doi.org/10.13140/2.1.3128.8320
[25] De les Valls, E. M., & Batet, L. (2008, July 10-11). OpenFOAM capabilities for MHD simulation under nuclear fusion technology conditions. OpenFOAM workshop Milan, Barcelona, Spain. https://woodruffscientific.com/files/ElisabetMasDeLesValls.pdf
[26] Mistrangelo, C., & Bühler, L. (2011). Development of a numerical tool to simulate magnetohydrodynamic interactions of liquid metals with strong applied magnetic fields. Fusion Science and Technology, 60(2), 798-803. https://doi.org/10.13182/ FST11-A12483
[27] Moghimi, S. M., Abbasi, M., Khaki Jamei, M., & Domiri Ganji, D. (2020). Boundary-layer separation in circular diffuser flows in the presence of an external non-uniform magnetic field. Mech. Sci., 11(1), 39-48. https://doi.org/10.5194/ms-11-39-2020
[28] Moghimi, S. M., Abbasi, M., Khaki Jamei, M., & Ganji, D. D. (2020). Effect of Non-uniform Magnetic Field on Non-newtonian Fluid Separation in a Diffuser. International Journal of Engineering, 33(7), 1354-1363. https://doi.org/10.5829/ ije.2020.33.07a.23
[29] Roberts, P. H. (1967). An introduction to magnetohydrodynamics. Longmans London. https://d1wqtxts1xzle7.cloudfront.net/32683602/_P._H_Roberts__An_introduction_to_magnetohydrodyna(Bookos.org)-with-cover-page-v2.pdf?Expires=1642407 226&Signature=fDND~tROBVIBS7Z8MGdsHT0Ijp6hVh9P0VpImQ1Kt5FA-x KItGwWdwQfWo7ZyJ02~WnrK~iKIK71hmV89n2MpEChlc9MR2F1bfg2-0-V sfexrYS7wafvgiqxj6skuNaMB4z~iq-lEoJqTXaAjngmdSOaE-4LRo~um1N~NiN U9Ru9pWW38l1BDowtBkuYlF0HDOczuqZF0qdNpS1LbBwF9NZ5WsTyz7IH~gByAlv1xaC~X8Sy7mxyLmSIgeAhePKTDp6v1O5xH1dB3mYfCUp3ySQfS7SiSJgu8Gj9AUlzfgPcyeycPSkV0~Vg-27x~cn489XkP48ExxvFORwdPsZFTg__& Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
[30] Davison, H. W. (1968). Compilation of thermophysical properties of liquid lithium. National Aeronautics and Space Administration. https://ntrs.nasa.gov/api/citations/ 19680018893/downloads/19680018893.pdf
[31] Lee, G. H., & Kim, H. R. (2018). Numerical analysis of the electromagnetic force for design optimization of a rectangular direct current electromagnetic pump. Nuclear Engineering and Technology, 50(6), 869-876. https://doi.org/10.1016/j.net.2018.04.010
[32] Okita, T., Matsuda, S., Yamaoka, N., Hoashi, E., Yokomine, T., & Muroga, T. (2018). Study on measurement of the flow velocity of liquid lithium jet using MHD effect for IFMIF. Fusion Engineering and Design, 136, 178-182. https://doi.org/10.1016 /j.fusengdes.2018.01.039
[33] Zinkle, S. (1998, July 27028). Summary of physical properties for lithium, Pb-17Li, and (LiF) n• BeF2 coolants. APEX study meeting, Sandia National Lab. http://www.fusion.ucla.edu/APEX/meeting4/1zinkle0798.pdf
[34] Taheri, M. H., Abbasi, M., & Khaki Jamei, M. (2019). Using artificial neural network for computing the development length of MHD channel flows. Mechanics Research Communications, 99, 8-14. https://doi.org/10.1016/j.mechrescom.2019.06.003