حذف روی از پساب صنعتی به‌وسیله غلاف نخود فرنگی

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسنده

عضو هیئت علمی، گروه صنایع شیمیایی، آموزشکده فنی دختران نجف آباد-سمیه، دانشگاه فنی و حرفه ای استان اصفهان، ایران.

چکیده

در این مطالعه، حذف روی در محیط‌های آبی با استفاده از غلاف نخود فرنگی به‌عنوان ماده جاذب ارزان‌قیمت بررسی شد. غلاف نخود فرنگی، یک ماده زائد جامد آلی است که قابلیت بالایی در حذف یون فلزات سنگین از پساب دارد و می‌تواند در تصفیه پساب‌های صنعتی که از مهم‌ترین منابع آلاینده آب و خاک هستند، بسیار مفید و کارآمد باشد. مطالعات جذب به‌صورت تابعی از PH، زمان تماس، مقدار جاذب و غلظت اولیه یون فلزی در سیستم ناپیوسته انجام گرفت. نتایج حاصل از آزمایش‌ها مشخص ساخت که با افزایش PH محلول، جذب روی توسط غلاف نخود سبز، افزایش یافت و ظرفیت جذب به مقدار حداکثر در 8 PH= رسید. علاوه براین با افزایش زمان تماس، مقدار جذب شده یون روی، افزایش یافت و پس از 60 دقیقه به تعادل رسید. در حالی که با افزایش مقدار جاذب به محلول، در مقدار جذب روی کاهش مشاهده گردید. همچنین با افزایش غلظت اولیه یون روی، درصد جذب کاهش در صورتی که برای ظرفیت جذب فلز افزایش مشاهده شد. مدل‌های ایزوترم جذب لانگمویر و فرندلیچ برای تعیین کارایی غلاف نخود فرنگی به‌عنوان جاذب مورد استفاده قرار گرفتند. تجزیه و تحلیل رگرسیون خطی نشان داد که داده‌های آزمایشگاهی با مدل‌های ایزوترم لانگمویر و فرندلیچ تطابق خوبی دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Removal of Zinc from Wastewater Using Green Pea Pods as Bio-adsorbent

نویسنده [English]

  • Maryam Fakharzadeh
Faculty Member, Department of Chemical Industry, Faculty of Najafabad-Somayeh, Isfahan Branch, Technical and Vocational University (TVU), Isfahan, Iran.
چکیده [English]

In this study, the removal of Zn (II) ions from wastewater using an agro-waste, green pea (Pisum sativum) pod as low-cost adsorbent material was investigated. Green pea pod (Pisum sativum) is as an organic solid waste material that has high adsorbing capacity in removal of heavy metal ions from wastewater and can be very effective in treating industrial aqueous solutions that are important sources of water and soil pollution. The removal studies were done as a function of pH, contact time, adsorbent amount and initial metal ion concentration in the batch system. With increasing pH of the solutions, the adsorption of zinc by green pea pods also increased and adsorption capacity attained a maximum value at pH=8. By increasing the contact time, the amount of zinc adsorbed increased and reached equilibrium after 60 min. However, by increasing the amount of adsorbent to the solution, the adsorption of zinc decreased. By increasing initial concentration of zinc ions, the percentages of adsorption decreased but the metal uptake increased. Langmuir and Freundlich adsorption isotherm models were applied to determine the efficiency of pea pods used as an adsorbent. The linear regression analysis showed that the experimental data perfectly fit both models.

کلیدواژه‌ها [English]

  • "Heavy metals"
  • " Wastewater"
  • " Zinc"
  • " Pea Pods". "Adsorption"
  • "Isotherm model"
[1] Water, U. (2018). 2018 UN World Water Development Report, Nature-based Solutions for Water. UNESCO. http://repo.floodalliance.net/jspui/handle/44111/2726
[2] Joseph, L., Jun, B.-M., Flora, J. R. V., Park, C. M., & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229(1-2), 142-159. https://doi.org/10.1016/j.chemosphere.2019.04.198
[3] Pandit, A. B., & Kumar, J. K. (2015). Clean Water for Developing Countries. Annual Review of Chemical and Biomolecular Engineering, 6(1), 217-246. https://doi.org /10.1146/annurev-chembioeng-061114-123432
[4] Amadi, C. N., Igweze, Z. N., & Orisakwe, O. E. (2017). Heavy metals in miscarriages and stillbirths in developing nations. Middle East Fertility Society Journal, 22(2), 91-100. https://doi.org/10.1016/j.mefs.2017.03.003
[5] Chowdhury, S., Mazumder, M. A. J., Al-Attas, O., & Husain, T. (2016). Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Science of The Total Environment, 569-570, 476-488. https://doi.org/ 10.1016/j.scitotenv.2016.06.166
[6] Agarwal, M., & Singh, K. (2017). Heavy metal removal from wastewater using various adsorbents: a review. Journal of Water Reuse and Desalination, 7(4), 387-419. https://doi.org/10.2166/wrd.2016.104
[7] Bazrafshan, E., Mohammadi, L., Ansari-Moghaddam, A., & Mahvi, A. H. (2015). Heavy metals removal from aqueous environments by electrocoagulation process–a systematic review. Journal of environmental health science and engineering, 13(1), 1-16. https://doi.org/10.1186/s40201-015-0233-8
[8] Kim, S., Chu, K. H., Al-Hamadani, Y. A. J., Park, C. M., Jang, M., Kim, D.-H., Yu, M., Heo, J., & Yoon, Y. (2018). Removal of contaminants of emerging concern by membranes in water and wastewater: A review. Chemical Engineering Journal, 335, 896-914. https://doi.org/10.1016/j.cej.2017.11.044
[9] Zare, E. N., Motahari, A., & Sillanpää, M. (2018). Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: A review. Environmental Research, 162, 173-195. https://doi.org/10.1016/j.envres.2017.12.025
[10] Veli, S., & Alyüz, B. (2007). Adsorption of copper and zinc from aqueous solutions by using natural clay. Journal of Hazardous Materials, 149(1), 226-233. https://doi. org/10.1016/j.jhazmat.2007.04.109
[11] King, P., Rakesh, N., Lahari, S. B., Kumar, Y. P., & Prasad, V. S. R. K. (2008). Biosorption of zinc onto Syzygium cumini L.: Equilibrium and kinetic studies. Chemical Engineering Journal, 144(2), 181-187. https://doi.org/10.1016/j.cej.2008.01.019
[12] Rivera‐Utrilla, J., Bautista‐Toledo, I., Ferro‐García, M. A., & Moreno‐Castilla, C. (2001). Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. Journal of Chemical Technology & Biotechnology, 76(12), 1209-1215. https://doi.org/10.1002/jctb.506
[13] Khormaei, M., Nasernejad, B., Edrisi, M., & Eslamzadeh, T. (2007). Copper biosorption from aqueous solutions by sour orange residue. Journal of Hazardous Materials, 149(2), 269-274. https://doi.org/10.1016/j.jhazmat.2007.03.074
[14] Mohan, D., & Singh, K. P. (2002). Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. Water Research, 36(9), 2304-2318. https://doi.org/10.1016/S0043-1354 (01)00447-X
[15] Taşar, Ş., Kaya, F., & Özer, A. (2014). Biosorption of lead(II) ions from aqueous solution by peanut shells: Equilibrium, thermodynamic and kinetic studies. Journal of Environmental Chemical Engineering, 2(2), 1018-1026. https://doi.org /10.1016/j.jece.2014.03.015
[16] Chen, X. C., Wang, Y. P., Lin, Q., Shi, J. Y., Wu, W. X., & Chen, Y. X. (2005). Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloids and Surfaces B: Biointerfaces, 46(2), 101-107. https://doi. org/10.1016/j.colsurfb.2005.10.003
[17] Ucun, H., Aksakal, O., & Yildiz, E. (2009). Copper(II) and zinc(II) biosorption on Pinus sylvestris L. Journal of Hazardous Materials, 161(2), 1040-1045. https:// doi.org/10.1016/j.jhazmat.2008.04.050
[18] Bhattacharya, A. K., Mandal, S. N., & Das, S. K. (2006). Adsorption of Zn(II) from aqueous solution by using different adsorbents. Chemical Engineering Journal, 123(1), 43-51. https://doi.org/10.1016/j.cej.2006.06.012
[19] Sanchooli Moghaddam, M., Rahdar, S., & Taghavi, M. (2016). Cadmium removal from aqueous solutions using saxaul tree ash. Iranian journal of chemistry and chemical engineering (IJCCE), 35(3), 45-52. https://doi.org/10.30492/ijcce.2016.22058
[20] Adhiambo, O. R., Lusweti, K. J., & Morang’a, G. Z. (2015). Biosorption of Pb2+ and Cr2+ using Moringa Oleifera and their adsorption isotherms. Science Journal of Analytical Chemistry, 3(6), 100-108. http://hdl.handle.net/190/262
[21] Zhang, L., Zeng, Y., & Cheng, Z. (2016). Removal of heavy metal ions using chitosan and modified chitosan: A review. Journal of Molecular Liquids, 214, 175-191. https://doi.org/10.1016/j.molliq.2015.12.013
[22] Hossain, M., Ngo, H. H., Guo, W., & Nguyen, T. (2012). Removal of copper from water by adsorption onto banana peel as bioadsorbent. International Journal of Geomate, 2(2), 227-234. https://doi.org/10.21660/2012.4.3c
[23] Jaafarzadeh, N., Mengelizadeh, N., Takdastan, A., Farsani, M. H., Niknam, N., Aalipour, M., Hadei, M., & Bahrami, P. (2015). Biosorption of heavy metals from aqueous solutions onto chitin. International Journal of Environmental Health Engineering, 4(1), 7. https://doi.org/10.4103/2277-9183.153992
[24] HAQ, N. B., Rubina, K., & MUHAMMAD, A. H. (2011). Biosorption of Pb (II) and Co (II) on red rose waste biomass. Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 30(4), 81-88. https://doi.org/10.30492/ijcce.2011.6093
[25] Yang, C., Wang, J., Lei, M., Xie, G., Zeng, G., & Luo, S. (2010). Biosorption of zinc(II) from aqueous solution by dried activated sludge. Journal of Environmental Sciences, 22(5), 675-680. https://doi.org/10.1016/S1001-0742(09)60162-5
[26] Katal, R., Zare, H., Rahmati, H. T., & Darzi, G. N. (2012). Biosorption of zinc from aqueous solutions using dried activated sludge. Environmental Engineering and Management Journal, 11(4), 857-865. https://doi.org/10.30638/eemj.2012.109