طراحی یک مدل بهینه‌سازی محدب برای خودترمیمی یک شبکه توزیع هوشمند

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 دانشجوی دکتری، گروه مهندسی برق، واحد خمینی شهر، دانشگاه آزاد اسلامی، اصفهان، ایران.

2 استادیار، گروه مهندسی برق، واحد خمینی شهر، دانشگاه آزاد اسلامی، اصفهان، ایران.

3 استاد، گروه مهندسی برق، دانشکده برق، دانشگاه امیر کبیر، تهران، ایران.

چکیده

خودترمیمی برای ترمیم خودکار سیستم توزیع در هنگام خطا به‌کار می‌رود. یکی از روش‌های کاهش مشترکین بدون برق، بهره‌برداری منطقه خطادار به‌صورت جزیره‌ای است اما زمانی جزیره به‌صورت بهینه تشکیل می‌شود که این جزیره به‌صورت آنلاین بعد از خطا شکل گیرد. در صورتی که جزیره قبل از خطا تعیین شده باشد، مرز بهینه جزیره تشکیل نمی‌شود و ممکن است تعداد مشترکین بدون برق افزایش یابد. در این مقاله جزیره‌سازی به‌صورت آنلاین پس از خطا انجام می‌شود. یکی از مهم‌ترین مشکلات پس از وقوع یک رخداد خطا، حل سریع مسئله است. از آن‌جایی که مدل‌های غیرخطی، زمان حل را به‌شدت زیاد می‌کنند؛ در روش پیشنهادی، مسئله خودترمیمی از مدل MINLP نامحدب به یک مدل محدب تبدیل شده است. در نتیجه مدل پیشنهادی با زمان بسیار کمی می‌تواند به جواب برسد. نکته دوم در مسئله بهینه‌سازی خودترمیمی رسیدن به جواب بهینه سراسری است. چون در مسائل محدب تنها یک راه‌حل بهینه وجود دارد؛ بنابراین روش پیشنهادی رسیدن به جواب بهینه سراسری را تضمین می‌کند. همچنین مدل‌سازی بار و تولید در یک فضای احتمالاتی صورت می‌گیرد. پس از تعیین ریزشبکه بهینه، تولید بهینه منابع تولید پراکنده و برداشت بار برای متعادل کردن توان سیستم انجام می‌شود. برای نشان دادن کارایی روش پیشنهادی از سیستم 33 باس IEEE استفاده شده است. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Designing a Convex Optimization Model for Self-healing of a Smart Distribution Network

نویسندگان [English]

  • Mohammad Hassan Yeganehkia 1
  • Mohammad Mahdi Rezaei 2
  • Mehrdad Abedi 3
1 PhD Student, Department of Electrical Engineering, Khomeinishahr Branch, Islamic Azad University, Isfahan, Iran.
2 Assistant Professor, Department of Electrical Engineering, Khomeinishahr Branch, Islamic Azad University, Isfahan, Iran.
3 Professor, Department of Electrical Engineering, Faculty of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran.
چکیده [English]

Self-healing is used to automatically repair the distribution system in the event of a fault. One way to reduce without service customers is to operate the faulty area as an island. However, the island is formed optimally when the island is formed online after the fault. If the island is determined before the fault, the optimal margin of the island will not be formed and the number of customers without electricity might increase. In this article, island building is carried out online after the fault. One of the most important problems after a fault occurs is the quick solution of the problem. Since nonlinear models greatly increase the solving time, in the proposed method, the problem is transformed from a non-convex MINLP model to a convex model. As a result, the proposed model can be answered in a very short time. The second point in the problem of self-healing optimization is to achieve the optimal global solution. The optimization problem is carried out by the convex optimization method. Because in convex problems there is only one optimal, the proposed method ensures the achievement of the optimal global solution. A variety of dispatchable and non-dispatchable distributed generation sources were used. Load and production modeling was also undertaken in a probabilistic space because considering the uncertainty, it can be said that the proposed model can be resistant to such events. After determining the optimal microgrid, the optimal production of distributed generation resources and load shedding was carried out to balance the system power. The IEEE 33-bus system was used to demonstrate the efficiency of the proposed method. 

کلیدواژه‌ها [English]

  • Convex optimization Self
  • healing Load shedding Distributed generation sources Islanding
[1] Zadsar, M., Haghifam, M. R., & Larimi, S. M. M. (2017). Approach for self-healing resilient operation of active distribution network with microgrid. IET Generation, Transmission & Distribution, 11(18), 4633-4643 .
[2] Cavalcante, P. L., López, J .C., Franco, J. F., Rider, M. J., Garcia, A. V., Malveira, M. R. R., Martins, L. L., & Direito, L. C. M. (2016). Centralized Self-Healing Scheme for Electrical Distribution Systems. IEEE Transactions on Smart Grid, 7(1), 145-155. https://doi.org/10.1109/TSG.2015.2454436
[3] Arefifar, S. A., Mohamed, Y. A. I., & Fouly, T. H. M. E.-. (2013). Comprehensive Operational Planning Framework for Self-Healing Control Actions in Smart Distribution Grids. IEEE Transactions on Power Systems, 28(4), 4192-4200. https//:doi.org/10.1109/TPWRS.2013.2259852
[4] Wang, Z., & Wang, J. (2015). Self-Healing Resilient Distribution Systems Based on Sectionalization Into Microgrids. IEEE Transactions on Power Systems, 30(6), 3139-3149. https://doi.org/10.1109/TPWRS.2015.2389753
[5] Wang, Z., Chen, B., Wang, J., & Chen, C. (2016). Networked Microgrids for Self-Healing Power Systems. IEEE Transactions on Smart Grid, 7(1), 310-319. https://doi.org/10.1109/TSG.2015.2427513
[6] Li, C., Liu, X., Zhang, W., Cao, Y., Dong, X., Wang, F & ,.Li, L. (2016). Assessment Method and Indexes of Operating States Classification for Distribution System With Distributed Generations. IEEE Transactions on Smart Grid, 7(1), 481-490. https://doi.org/10.1109/TSG.2015.2402157
[7] Arefifar, S. A., Mohamed, Y. A. I., & El-Fouly, T. (2015). Optimized Multiple Microgrid-Based Clustering of Active Distribution Systems Considering Communication and Control Requirements. IEEE Transactions on Industrial Electronics, 62(2), 711-723. https://doi.org/10.1109/TIE.2014.2352212
[8] Chen, B., Chen, C., Wang, J., & Butler-Purry, K. L. (2018). Sequential Service Restoration for Unbalanced Distribution Systems and Microgrids. IEEE Transactions on Power Systems, 33(2), 1507-1520. https://doi.org/10.1109/
TPWRS.2017.2720122
[9] Li, J., Ma, X., Liu, C., & Schneider, K. P. (2014). Distribution System Restoration With Microgrids Using Spanning Tree Search. IEEE Transactions on Power Systems, 29(6), 3021-3029. https://doi.org/10.1109/TPWRS.2014.2312424
[10] Karim, M. A., Currie, J., & Lie, T. T. (2018). Dynamic Event Detection Using a Distributed Feature Selection Based Machine Learning Approach in a Self-Healing Microgrid. IEEE Transactions on Power Systems, 33(5), 4706-4718. https://doi.org/10.1109/TPWRS.2018.2812768
[11] Arefifar, S. A., Mohamed, Y. A. I., & El-Fouly, T. H. M. (2012). Supply-Adequacy-Based Optimal Construction of Microgrids in Smart Distribution Systems. IEEE Transactions on Smart Grid, 3(3), 1491-1502. https://doi.org/10.1109/TSG.2012. 2198246
[12] Hosseinnezhad, V., Rafiee, M., Ahmadian, M., & Siano, P. (2018). A comprehensive framework for optimal day-ahead operational planning of self-healing smart distribution systems. International Journal of Electrical Power & Energy Systems, 99, 28-44. https://doi.org/10.1016/j.ijepes.2017.12.031
[13] Farzin, H., Fotuhi-Firuzabad, M., & Moeini-Aghtaie, M. (2016). Enhancing Power System Resilience Through Hierarchical Outage Management in Multi-Microgrids. IEEE Transactions on Smart Grid, 7(6), 2869-2879. https//:doi.org/10.1109/TSG. 2016.2558628
[14] Xu, Y., Liu, C. C., Schneider, K. P., Tuffner, F. K., & Ton, D. T. (2018). Microgrids for Service Restoration to Critical Load in a Resilient Distribution System. IEEE Transactions on Smart Grid, 9(1), 426-437. https://doi.org/10.1109/TSG.2016. 2591531
[15] Shahnia, F., Chandrasena, R. P. S., Rajakaruna, S., & Ghosh, A. (2014). Primary control level of parallel distributed energy resources converters in system of multiple interconnected autonomous microgrids within self-healing networks. IET Generation, Transmission & Distribution, 8(2), 203-222 .
[16] Souza, F. A. d., Vila, C. U., Enembreck, F., & Carpes, L. M. (2017). A Multiagent Framework for Self-Healing Mechanisms Considering Priority-Based Load Shedding and Islanding with Distributed Generation in Smart Distribution Grids. IEEE Latin America Transactions, 15(4), 632-638. https://doi.org/10.1109/TLA. 2017.7896348
[17] Chen, C., Wang, J., Qiu, F., & Zhao, D. (2016). Resilient Distribution System by Microgrids Formation After Natural Disasters. IEEE Transactions on Smart Grid, 7(2), 958-966. https://doi.org/10.1109/TSG.2015.2429653
[18] Pashajavid, E., Shahnia, F., & Ghosh, A. (2015). Development of a self-healing strategy to enhance the overloading resilience of islanded microgrids. IEEE Transactions on Smart Grid, 8(2), 868-880. https://doi.org/10.1109/TSG.2015.2477601
[19] Sun, W., Ma, S., Alvarez-Fernandez, I., & Golshani, A. (2018). Optimal self-healing strategy for microgrid islanding. IET Smart Grid ,1(4) ,143 -150 .
https://doi.org/10.1049/iet-stg.2018.0057
[20] Anuranj, N. J., Mathew, R. K., Ashok, S., & Kumaravel, S. (2016, March 4-6 ). Resiliency based power restoration in distribution systems using microgrids. 2016 IEEE 6th International Conference on Power Systems (ICPS), New Delhi, India. https://ieeexplore.ieee.org/abstract/document/7584186
[21] Alipour, M. (2017). Optimal allocation of SVC and TCSC in power system by means of fuzzy estimator with the approach of increasing the static stability of the voltage. Karafan Quarterly Scientific Journal, 14(42), 95-121 .
[22] Alinaghizadeh ardestani, m., & Vakili, A. (2020). Output feedback Controller design for HVAC system with delayed based Robust control approach. Karafan Quarterly Scientific Journal, 17(1), 89-99. https://doi.org/10.48301/kssa.2020.112758
[23] Choopani, K., Hedayati, M., & Effatnejad, R. (2020). Self‐healing optimization in active distribution network to improve reliability, and reduction losses, switching cost and load shedding. International Transactions on Electrical Energy Systems, 30(5), e12348. https://doi.org/10.1002/2050-7038.12348