اندازه‌گیری سولفید در نمونه‌های حقیقی با روش میکرواستخراج مایع- مایع به کمک جریان گردابی با دستگاه طیف‌سنج نوری مرئی فرابنفش

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 استادیار، گروه شیمی، دانشگاه فنی و حرفه‌ای، تهران، ایران.

2 کارشناسی ارشد، گروه شیمی تجزیه، دانشکده علوم پایه، دانشگاه فردوسی مشهد، مشهد، ایران.

چکیده

در این تحقیق، یک روش میکرواستخراج مایع- مایع به کمک جریان گردابی[1] برای تغلیظ مقادیر کم سولفید پیش از اندازه‌گیری آن با اسپکتروفوتومتر فرابنفش- مرئی[2] معرفی شده است. این روش براساس تشکیل کمپلکس متیلن بلو به‌منظور تشخیص انتخابی و حساس یون سولفید می‌باشد. روش کار به این صورت بود که برای تشکیل کمپلکس متیلن بلو (یک رنگ آبی که در حلال آلی ۱ و ۲ دی کلرو اتان استخراج شد)، سولفید با لیگاند NوN دی متیل-پی- فنیلن دی آمین [3] (DMPPDA) در حضور آهن (III) کلرید واکنش داد که در طول موج حداکثر 658 نانومتر توسط دستگاه اسپکتروفوتومتر فرابنفش- مرئی اندازه‌گیری شد. تأثیر پارامترهای مؤثر بر استخراج کمپلکس متیلن بلو از جمله نوع حلال استخراج، حجم حلال آلی، غلظت دی متیل فنیلن دی آمین (به‌عنوان لیگاند)، زمان و سرعت جریان گردابی مورد بررسی قرار گرفتند و بهینه شدند. تحت شرایط بهینه، روش پیشنهادی توانست یون سولفید را در محدوده 05/0 تا 5/0 نانوگرم بر میلی‌لیتر با موفقیت تشخیص دهد. حد تشخیص برای سولفید در سه اندازه‌‌گیری نمونه شاهد 018/0 نانوگرم بر میلی‌لیتر به‌دست آمد. همچنین انحراف استاندارد نسبی برا ی پنج اندازه‌‌گیری از نمونه 05/0 نانوگرم بر میلی‌لیتر سولفید، 8/2 درصد به‌دست آمد. تأثیر چندین یون مزاحم بالقوه نیز بررسی شد. این روش به‌طور موفقیت‌آمیزی برای تعیین مقدار سولفید در سه نمونه آب (آب لوله‌کشی، آب زیرزمینی و فاضلاب) به‌کار گرفته شد.
 
[1] Vortex-assisted liquid-liquid microextraction
[2] UV-Visible spectrophotometric
[3] N,N dimethyl-p-phenylenediamine

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Measurement of Sulfide in Real Samples by Vortex-Assisted Liquid-Liquid Microextraction Method with Detection of UV-Vis Spectrophotometry

نویسندگان [English]

  • َAbolfazl Darroudi 1
  • Sara Enferadi 2
1 Assistant Professor, Department of Chemistry, Technical and Vocational University (TVU), Tehran, Iran.
2 MSc, Department of Analytical Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده [English]

In this study, a vortex-liquid liquid micro-extraction method for concentrating low amounts of sulfide before measuring it with an ultraviolet-visible spectrophotometer is introduced. This method is based on the formation of methylene blue complex for selective and sensitive detection of sulfide ions. The procedure was to form a sulfide with N, N-dimethyl-p-phenylenediamine (DMPPDA) ligand in the presence of ferric chloride to produce methylene blue, a dye that was extracted into 1,2 dichloroethane organic solvent and measured at a maximum wavelength of 658 nm by an ultraviolet-visible spectrophotometer. The effect of effective parameters on the extraction of methylene blue complex including the type of extraction solvent, organic solvent volume, concentration of dimethyl-p-phenylenediamine (as a ligand), vortex time and speed of vortex agitator were investigated and optimized. Under optimal conditions, the proposed method was able to successfully detect sulfide ions in the range of 0.05 to 0.5 ng / ml. The detection limit obtained for sulfide in 3 sample measurements of the control sample was 0.018 ng / ml. In addition, the relative standard deviation for 5 measurements of the 0.05 ng / ml sulfide sample was 2.8%. The effect of several potentially disturbing ions was also investigated. This method was successfully used to determine the amount of sulfide in 3 water samples (tap water, groundwater and waste water). 

کلیدواژه‌ها [English]

  • Microextraction
  • Vortex-assisted liquid and liquid Microextraction procedure
  • Uv-vis spectrophotometer
  • Determination of sulfide ion. Methylene blue
[1] Torabian, A., Hassani, A. H., & Shafiee, L. (2008). Investigation of the performance of chemical compounds of ferrous sulfate, chlorophyll and calcium hypochlorite in the removal of hydrogen sulfide and sulfide from industrial effluents. Environmental Science and Technology, 10(4), 164-173.
[2] Casella, I. G., Guascito, M. R., & Desimoni, E. (2000). Sulfide measurements by flow injection analysis and ion chromatography with electrochemical detection. Analytica Chimica Acta, 409(1-2), 27-34. https://doi.org/10.1016/S0003-2670(99) 00769-2
[3] Miura, Y., Matsushita, Y., & Haddad, P. (2005). Stabilization of sulfide and sulfite and ion-pair chromatography of mixtures of sulfide, sulfite, sulfate and thiosulfate. Journal of chromatography. A, 1085, 47-53. https://doi.org/10.1016/j.chroma.2005.02.010
[4] Canterford, D. R. (1975). Simultaneous determination of cyanide and sulfide with rapid direct current polarography. Analytical Chemistry, 47, 88-92. https://doi.org/10.10 21/AC60351A046
[5] Kurzawa, J. (1985). Determination of sulphur (II) compounds by flow injection analysis with application of the induced iodine/azide reaction. Analytica Chimica Acta, 173, 343-348. https://doi.org/10.1016/s0003-2670(00)84975-2
[6] Tang, D., & Santschi, P. H. (2000). Sensitive determination of dissolved sulfide in estuarine water by solid-phase extraction and high-performance liquid chromatography of methylene blue. Journal of Chromatography A 883(1-2), 305-309. https://doi.org/10.1016/s0021-9673(00)00381-2
[7] Radford-Knoery, J., & Cutter, G. A. (1993). Determination of carbonyl sulfide and hydrogen sulfide species in natural waters using specialized collection procedures and gas chromatography with flame photometric detection. Analytical Chemistry, 65(8), 976-982. https://doi.org/10.1021/ac00056a005
[8] Wood, C., & Marr, I. L. (1988). Improvements to the ethylene blue method for the determination of hydrogen sulphide in air. Analyst, 113, 1635-1638. https://doi. org/10.1039/AN9881301635
[9] Koh, T., Miura, Y., Yamamuro, N., & Takaki, T. (1990). Spectrophotometric determination of trace amounts of sulphide and hydrogen sulphide by formation of thiocyanate. Analyst, 115(8), 1133-1137. https://doi.org/10.1039/AN9901501133
[10] Chawla, H. M., Goel, P., & Munjal, P. (2015). A new metallo-supramolecular sensor for recognition of sulfide ions. Tetrahedron Letters, 56(5), 682-685. https://doi. org/10.1016/j.tetlet.2014.12.057
[11] Chen, J., Li, Y., Zhong, W., Hou, Q., Wang, H., Sun, X., & Yi, P. (2015). Novel fluorescent polymeric nanoparticles for highly selective recognition of copper ion and sulfide anion in water. Sensors and Actuators B: Chemical, 206, 230–238. https://doi.org/10.1016/j.snb.2014.09.034
[12] Rajabi, H. R., Shamsipur, M., Khosravi, A., Khani, O., & Yousefi, M. (2013). Selective spectrofluorimetric determination of sulfide ion using manganese doped ZnS quantum dots as luminescent probe. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 107, 256-262. https://doi.org/10.1016/j.saa.2013.01.045
[13] Baumbach, G., Limburg, T., & Einax, J. W. (2013). Quantitative determination of sulfur by high-resolution graphite furnace molecular absorption spectrometry. Microchemical 106, 295-299. https://doi.org/10.1016/j.microc.2012.08.011
[14] Huang, R., Zheng, X., & Qu, Y. (2007). Highly selective electrogenerated chemiluminescence (ECL) for sulfide ion determination at multi-wall carbon nanotubes-modified graphite electrode. Anal Chim Acta, 582(2), 267-274. https:// doi.org/10.1016/j.aca.2006.09.035
[15] Afkhami, A., & Sarlak, N. (2007). Design and characteristics of a sulfide and sulfite optode based on immobilization of methyl violet on a triacetylcellulose membrane. Sensors and Actuators B: Chemical, 124(2), 285-289. https://doi.org/10.1016/j. snb.2006.12.041
[16] Baldo, M., Daniele, S., Bragato, C., & Mazzocchin, G. (2002). Voltammetric investigation on sulfide ions in aqueous solutions with mercury-coated platinum microelectrodes. Analytica Chimica Acta, 464(2), 217-227. https://doi.org/10.101 6/S0003-2670(02)00490-7
[17] Cali, C., Taillades, G., Pradel, A., & Ribes, M. (2001). Determination of sulfur species using a glassy-crystalline chalcogenide membrane. Sensors and Actuators B Chemical, 76, 560-564. https://doi.org/10.1016/S0925-4005(01)00631-1
[18] Hassan, S. S. M., Marzouk, S. A. M., & Sayour, H. E. M. (2002). Methylene blue potentiometric sensor for selective determination of sulfide ions. Analytica Chimica Acta, 466(1), 47-55. https://doi.org/10.1016/S0003-2670(02)00515-9
[19] Sarlak, N., & Anizadeh, M. (2011). Simultaneous kinetic spectrophotometric determination of sulfide and sulfite ions by using an optode and the partial least squares (PLS) regression. Sensors and Actuators B: Chemical, 160(1), 644-649. https://doi.org/10.1016/j.snb.2011.08.042
[20] Savizi, I., Kariminia, H.-R., Ghadiri, M., & Roosta-Azad, R. (2012). Amperometric sulfide detection using Coprinus cinereus peroxidase immobilized on screen printed electrode in an enzyme inhibition based biosensor. Biosensors & bioelectronics, 35(1), 297-301. https://doi.org/10.1016/j.bios.2012.03.004
[21] Tsai, D.-M., Kumar, A. S., & Zen, J.-M. (2006). A highly stable and sensitive chemically modified screen-printed electrode for sulfide analysis. Analytica Chimica Acta, 556(1), 145-150. https://doi.org/10.1016/j.aca.2005.05.038
[22] Deng, H.-H., Weng, S.-H., Huang, S.-L., Zhang, L.-N., Liu, A.-L., Lin, X.-H., & Chen, W. (2014). Colorimetric detection of sulfide based on target-induced shielding against the peroxidase-like activity of gold nanoparticles. Analytica Chimica Acta, 852, 218-222. https://doi.org/10.1016/j.aca.2014.09.023
[23] Pandya, A., Joshi, K. V., Modi, N. R., & Menon, S. K. (2012). Rapid colorimetric detection of sulfide using calix[4]arene modified gold nanoparticles as a probe. Sensors and Actuators B: Chemical, 168, 54-61. https://doi.org/10.1016/j.snb.201 2.01.023
[24] Pourreza, N., & Golmohammadi, H. (2014). Green colorimetric recognition of trace sulfide ions in water samples using curcumin nanoparticle in micelle mediated system. Talanta, 119, 181-186. https://doi.org/10.1016/j.talanta.2013.11.005
[25] Zambrzycka, E., & Godlewska-Zylkiewicz, B. (2014). Determination of sulfur in food by high resolution continuum source flame molecular absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 101, 234-239. https://doi.org/ 10.1016/j.sab.2014.08.041
[26] Titova, T. V., Borisova, N. S., & Zakharchuk, N. F. (2009). Determination of sub-micromolar amounts of sulfide by standard free anodic stripping voltammetry and anodic stripping voltammetric titration. Analytica Chemica Acta, 653(2), 154-160. https://doi.org/10.1016/j.aca.2009.09.003
[27] Colon, M., Iglesias, M., & Hidalgo, M. (2007). Development of a new method for sulfide determination by vapor generator–inductively coupled plasma–mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 62(5), 470-475. https://doi.org/10.1016/j.sab.2007.04.004
[28] Van Staden, J., & Kluever, L. (1998). Determination of sulphide in effluent streams using a solid-phase lead (II) chromate reactor incorporated into a flow-injection system. Analytical Chimica Acta, 369(1-2), 157-161. https://doi.org/10.1016/s000 3-2670(98)00225-6
[29] He, Y., & Lee, H. K. (1997). Liquid-phase microextraction in a single drop of organic solvent by using a conventional microsyringe. Analytical Chemistry, 69(22), 4634-4640. https://doi.org/10.1021/ac970242q
[30] Hemmatian, N., & Mohsen Sarrafi, A. H. (2020). Preconcentration and determination of palladium in real samples using 2-mercaptobenzimidazole ligand by liquid phase microextraction. Journal of Applied Research in Chemistry (JARC), 14(3 ), 123-133. https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=849163
[31] Kamgou, S., Abdi, K., Khadem, M., Heidari, M., Heravizadeh, O., Daneyali, A., & Shahtaheri, S. J. (2020). Development of dispersive liquid liquid microextraction solidofied floating organic drop (DLLME SFOD) method for determination of cadmium in biological samples. Health and Safety at Work, 10(1). https://www. semanticscholar.org/paper/Development-of-dispersive-liquid% E2%80%93liquid-solidofied-kamgou-Abdi/8bd63f14c45e7eaf69db5691a292058cf0410ba3
[32] Rezaee, M., Assadi, Y., Hosseini, M.-R. M., Aghaee, E., Ahmadi, F., & Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid–liquid microextraction. Journal of Chromatography A, 1116(1-2), 1-9. https://doi. org/10.1016/j.chroma.2006.03.007
[33] Zanjani, M. R. K., Yamini, Y., Shariati, S., & Jönsson, J. A. (2007). A new liquid-phase microextraction method based on solidification of floating organic drop. Analytica Chimica Acta, 585(2), 286-293. https://doi.org/10.1016/j.aca.2006.12.049
[34] Yiantzi, E., Psillakis, E., Tyrovola, K., & Kalogerakis, N. (2010). Vortex-assisted liquid–liquid microextraction of octylphenol, nonylphenol and bisphenol-A. Talanta, 80(5), 2057-2062. https://doi.org/10.1016/j.talanta.2009.11.005
[35] Kaykhaii, M., Rahmani, M., & Mehrpur, M. (2016). One-Step in-Syringe Dispersive Liquid-Liquid Microextraction and Spectrophotometric Determination of Trace Amounts of Palladium in Aqueous Sample. Nashrieh Shimi va Mohandesi Shimi Iran, 35(3), 87-97. https://www.nsmsi.ir/article_23745.html?lang=en
[36] Kaykhaii, M., & Ghasemi, E. (2013). Room temperature ionic liquid-based dispersive liquid–liquid microextraction of uranium in water samples before spectrophotometric determination. Analytical Methods, 5(19), 5260-5266. https:// doi.org/10.1039/c3ay41190g
[37] Ariza-Avidad, M., Agudo-Acemel, M., Salinas-Castillo, A., & Capitán-Vallvey, L. F. (2015). Inkjet-printed disposable metal complexing indicator-displacement assay for sulphide determination in water. Analytica Chimica Acta 872, 55-62. https:// doi.org/10.1016/j.aca.2015.02.045
[38] Ferrer, L., de-Armas, G., Miro, M., Estela, J., & Cerdà, V. (2005). Flow-through optical fiber sensor for automatic sulfide determination in waters by multisyringe flow injection analysis using solid-phase reflectometry. The Analyst, 130, 644-651. https://doi.org/10.1039/b416473c
[39] Eskandari, H., & Shahbazi-Raz, M. (2016). Ionic liquid based microextraction combined with derivatization for efficient enrichment/determination of asulam and sulfide. Turkish Journal of Chemistry 40(6), 1019-1033. https://doi.org/10.3906/ kim-1512-37
[40] Lavilla, I., Pena-Pereira, F., Gil, S., Costas, M., & Bendicho, C. (2009). Microvolume turbidimetry for rapid and sensitive determination of the acid labile sulfide fraction in waters after headspace single-drop microextraction with in situ generation of volatile hydrogen sulfide. Anal Chim Acta, 647(1), 112-116. https://doi.org/10. 1016/j.aca.2009.05.035