بررسی حساسیت ده رقم انگور ایرانی به کرم خوشه خوار

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 دپارتمان کشاورزی، آموزشکده فنی کشاورزی شهریار، دانشگاه فنی و حرفه‌ای استان تهران، ایران.

2 دانش‌آموخته کارشناسی ارشد، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران.

چکیده

کرم خوشه‌خوار انگور (Lobesia botrana) یکی از مهم‌ترین آفات انگور در ایران و جهان محسوب می‌شود. این تحقیق، در سه بخش انجام شد. هدف از بخش اول، اندازه‌گیری شاخص‌های تغذیه‌ای در لارو کرم خوشه‌خوار روی 10 رقم انگور بومی ایران و استان فارس بود. در بخش دوم، خصوصیات فیزیکی و شیمیایی انگور در ده رقم، مطالعه شد و در بخش سوم، ترجیح میزبانی لارو و ترجیح تخم‌ریزی شب‌پره‌های ماده آفت، بررسی گردید. نتایج نشان دادند که شاخص‌های تغذیه‌ای لارو در ارقام مورد تغذیه، تفاوت معنی‌داری با یکدیگر دارند. ارقام سفید انگور قوچان و صاحبی سیاه، خصوصیات آنتی‌زنوزی و آنتی‌بیوزی علیه تغذیه لاروها دارند و همچنین دارای آنتی‌زنوز تخم‌ریزی علیه شب‌پره‌های ماده هستند و به‌ عنوان ارقام نسبتاً مقاوم در برابر کرم خوشه‌خوار انگور شناخته شدند. در حالی ‌که ارقام رطبی سفید زرقان و کشمشی بوانات، بیشتر از سایر ارقام، مطلوب لاروها بودند و بیشتر مورد تغذیه قرار گرفتند.    

کلیدواژه‌ها


عنوان مقاله [English]

An investigation of the Susceptibility of 10 Iranian Grape Cultivars to Lobesia botrana (Lep.: Tortricidae)

نویسندگان [English]

  • Mohammad Shojaaddini 1
  • Roghayeh Amiri 2
  • Sakineh Babaei 1
1 Department of Agricultural Machinery Engineering, Shahriar Agricultural Technical School, Technical and Vocational University (TVU), Tehran Branch, Iran.
2 Former MSc Student, Department of Agricultural, Shahid Bahonar University of Kerman, Kerman, Iran.
چکیده [English]

European grapevine moth, Lobesia botrana (Lep: Tortricidae), is one of the most significant pests in Iran and the world. This research was conducted in three parts; the first part aims to measure nutritional indices of L. botrana on ten Iranian grapes cultivars, the second part of this study is dedicated to investigating the physical and chemical characteristics of fruit cultivars, and the third part is related to larval host preference and moth egg laying preference. The results illustrated a significant difference between nutritional indices between grape cultivars. The cultivars Sefid Angoor Ghoochan and Sahebi Siah revealed antixenotic and antibiotic properties against larval feeding, and also showed ovipositional antixenosis, demonstrating their relatively high resistance against the aforementioned pest. The cultivars Rotabi Sefid Zarghan and Keshmeshi Bavanat were found to be relatively susceptible cultivars. The findings of the present research offer fundamental information on susceptible and resistant cultivars of grape against the pest L. botrana

کلیدواژه‌ها [English]

  • Grape
  • Lobesia botrana
  • Nutritional
  • Antixenosis
  • Host preference
References
[1] Saeedi, K. (2007). Study of seasonal changes in the population of Lobesia botrana Den. & Schiff. (Lepidoptera): Tortricidae and determination of spraying time in thirty hard zone. Pajouhesh & Sazandegi, 20(2), 141-148. https://www.sid.ir/fa/Journal/ ViewPaper.aspx?ID=68812
[2] Nazemi Rafie, J., Witzgall, P., & Sadeghi, A. (2013). Study of Seasonal Changes of Lobesia botrana (Lep: Tortricidae) and Effect of Concentrations of Sexual Pheromone and Grape Variety on Attraction of Adults in Kurdistan Province. Journal of Iranian Plant Protection Research, 27(3), 316-323. https://doi.org/10.22 067/jpp.v27i3.26749
[3] Khoshroo, A., Mulwa, R., Emrouznejad, A., & Arabi, B. (2013). A non-parametric Data Envelopment Analysis approach for improving energy efficiency of grape production. Energy, 63, 189–194. https://doi.org/10.1016/j.energy.2013.09.021
[4] Koul, O., Multani, J., Goomber, S., Daniewski, W., & Berlozecki, S. (2004). Activity of some nonazadirachtin limonoids from Azadirachta indica against lepidopteran larvae. Australian Journal of Entomology, 43(2), 189-195. https://doi.org/10.1111/j. 1440-6055.2003.00390.x
[5] Moschos, T. (2006). Yield loss quantification and economic injury level estimation for the carpophagous generations of the European grapevine moth Lobesia botrana Den. et Schiff. (Lepidoptera: Tortricidae). International Journal of Pest Management, 52(2), 141-147. https://doi.org/10.1080/09670870600639179
[6] Eghtedar, E. (1996). Biology of Lobesia botrana in Fars province. Applied Entomology and Phytopathology, 63(1/2), 5-6. https://www.cabi.org/isc/abstract/19971108888
[7] Hosseinzadeh, J., Karimpour, Y., & Farazmand, H. (2011). Effect of lufox, on Lobesia botrana Den. & Schiff. (Lepidoptera: Tortricidae). Egyptian Academic Journal of Biological Sciences, F. Toxicology & Pest Control, 3(1), 11-17. https://doi.org/ 10.21608/eajbsf.2011.17432
[8] Ifoulis, A., & Savopoulou-Soultani, M. (2006). Use of Geostatistical Analysis to Characterize the Spatial Distribution of Lobesia botrana (Lepidoptera: Tortricidae) Larvae in Northern Greece. Environmental Entomology, 35(2), 497-506. https://doi. org/10.1603/0046-225X-35.2.497
[9] Mondy, N., & Corio-Costet, M. (2000). The response of the grape berry moth (Lobesia botrana) to a dietary phytopathogenic fungus (Botrytis cinerea): the significance of fungus sterols. Journal of Insect Physiology, 46(12), 1557-1564. https://doi.org/10. 1016/s0022-1910(00)00085-8
[10] Civolani, S., Boselli, M., Butturini, A., Chicca, M., Fano, E. A., & Cassanelli, S. (2014). Assessment of insecticide resistance of Lobesia botrana (Lepidoptera: Tortricidae) in Emilia-Romagna region. Journal of Economic Entomology, 107(3), 1245-1249. https://doi.org/10.1603/ec13537
[11] Seraj, A. A. (2007). Principles of Plant Pest Control (Pest Management) Shahid Chamran University Press.
[12] Koul, O., & Cuperus, G. W. (2007). Ecologically Based Integrated Pest Management. CABI. https://books.google.com/books?id=EEb4KVBTe9IC
[13] Verkerk, R. H. J., Leather, S. R., & Wright, D. J. (1998). The potential for manipulating crop–pest–natural enemy interactions for improved insect pest management: REVIEW ARTICLE. Bulletin of Entomological Research, 88(5), 493-501. https:// doi.org/10.1017/S0007485300026018
[14] Parajulee, M. N., Shrestha, R. B., Slosser, J. E., & Bordovsky, D. G. (2011). Effects of Skip-Row Planting Pattern and Planting Date on Dryland Cotton Insect Pest Abundance and Selected Plant Parameters. Southwestern Entomologist, 36(1), 21-39. https://doi.org/10.3958/059.036.0103
[15] Chougule, N. P., Hivrale, V. K., Chhabda, P. J., Giri, A. P., & Kachole, M. S. (2003). Differential inhibition of Helicoverpa armigera gut proteinases by proteinase inhibitors of pigeonpea (Cajanus cajan) and its wild relatives. Phytochemistry, 64(3), 681-687. https://doi.org/10.1016/s0031-9422(03)00375-3
[16] Fermaud, M. (1998). Cultivar susceptibility of grape berry clusters to larvae of Lobesia botrana (Lepidoptera: Tortricidae). Journal of Economic Entomology, 91(4), 974-980. https://doi.org/10.1093/jee/91.4.974
[17] Moreau, J., Benrey, B., & Thiéry, D. (2006). Grape variety affects larval performance and also female reproductive performance of the European grapevine moth Lobesia botrana (Lepidoptera: Tortricidae). Bulletin of Entomological Research, 96(2), 205-212. https://doi.org/10.1079/ber2005417
[18] Thiéry, D., & Moreau, J. (2005). Relative performance of European grapevine moth (Lobesia botrana) on grapes and other hosts. Oecologia, 143(4), 548-557. https:// doi.org/10.1007/s00442-005-0022-7
[19] Sharma, H., & Norris, D. M. (1991). Comparative feeding preference and food intake and utilization by the cabbage looper (Lepidoptera: Noctuidae) on three legume species. Environmental Entomology, 20(6), 1589-1594.
[20] Batista Pereira, L. G., Petacci, F., Fernandes, J. B., Corrêa, A. G., Vieira, P. C., da Silva, M. F., & Malaspina, O. (2002). Biological activity of astilbin from Dimorphandra mollis against Anticarsia gemmatalis and Spodoptera frugiperda. Pest Management Science, 58(5), 503-507. https://doi.org/10.1002/ps.478
[21] Hoehn, E., Gasser, F., Guggenbühl, B., & Künsch, U. (2003). Efficacy of instrumental measurements for determination of minimum requirements of firmness, soluble solids, and acidity of several apple varieties in comparison to consumer expectations. Postharvest Biology and Technology, 27(1), 27-37. https://doi.org/10. 1016/S0925-5214(02)00190-4
[22] Wagner, G. J. (1979). Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiology, 64(1), 88-93. https://doi.org/10.1104/pp.64.1.88
[23] Von Gadow, A., Joubert, E., & Hansmann, C. F. (1997). Comparison of the Antioxidant Activity of Aspalathin with That of Other Plant Phenols of Rooibos Tea (Aspalathus linearis), α-Tocopherol, BHT, and BHA. Journal of Agricultural and Food Chemistry, 45(3), 632-638. https://doi.org/10.1021/jf960281n
[24] Akhtar, M., & Aslam, M. (1986). Xanthomonas campestris pv. undulosa on wheat. RACHIS, Barley and Wheat Newsletter, 5(2), 34-37.
[25] Price, P. W. (1997). Insect Ecology. Wiley. https://books.google.com/books?id=VDM gAQAAMAAJ
[26] Martin, A. L., & Pullin, S. A. (2004). Host-plant specialisation and habitat restriction in an endangered insect, Lycaena dispar batavus (Lepidoptera: Lycaenidae) I. Larval feeding and oviposition preferences. European Journal of Entomology, 101(1), 51-56. https://doi.org/10.14411/eje.2004.012
[27] Tasin, M., Bäckman, A.-C., Bengtsson, M., Varela, N., Ioriatti, C., & Witzgall, P. (2006). Wind tunnel attraction of grapevine moth females, Lobesia Botrana, to natural and artificial grape odour. Chemoecology, 16(2), 87-92. https://doi.org/10. 1007/s00049-005-0332-6
[28] Sengottayan, S.-N., Chung, P., & Murugan, K. (2005). Effect of biopesticides applied separately or together on nutritional indices of the rice leaffolder Cnaphalocrocis medinalis. Phytoparasitica, 33(2), 187-195. https://doi.org/10.1007/BF03029978
[29] Coelho, M. B., Marangoni, S., & Macedo, M. L. (2007). Insecticidal action of Annona coriacea lectin against the flour moth Anagasta kuehniella and the rice moth Corcyra cephalonica (Lepidoptera: Pyralidae). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 146(3), 406-414. https://doi.org/10.1016/j.cb pc.2007.05.001
[30] Rezaei, V., Moharramipour, S., Fathipour, Y., & Talebi, A. A. (2006). Nutritional indices and host preference of American white webworm, Hyphantria cunea (Lepidoptera: Arctiidae) on five host plants. Journal of Entomological Society of Iran, 26(1), 57-72. https://jesi.areeo.ac.ir/article_105378.html?lang=en
[31] Naseri, B., Fathipour, Y., Moharramipour, S., & Hosseininaveh, V. (2010). Nutritional indices of the cotton bollworm, Helicoverpa armigera, on 13 soybean varieties. Journal of Insect Science, 10, 1-14. https://doi.org/10.1673/031.010.14111
[32] Baghery, F., Fathipour, Y., & Naseri, B. (2013). Nutritional indices of Helicoverpa armigera (Lep.: Noctuidae) on seeds of five host plants (Article in English). Applied Entomology and Phytopathology, 80(2), 19-28. https://doi.org/10.22092/jaep.2013.100581
[33] Lazarević, J., Perić-Mataruga, V., Vlahović, M., Mrdaković, M., & Cvetanović, D. (2004). Effects of rearing density on larval growth and activity of digestive enzymes in Lymantria dispar L. (Lepidoptera: Lymantriidae). Folia Biologica-Krakow, 52(1-2), 105-112. https://pubmed.ncbi.nlm.nih.gov/15521657/
[34] Farazmand, H., Rassoulian, G. R., & Bayat Assadi, H. (2000). Comparative notes on growth and development of red palm weevil, Rhynchophorus ferrugineus Oliv.(Col.: Curculionidae), on date palm varieties in Saravan Region. Journal of Entomological Society of Iran, 19(1/2), 1-14.
[35] Srinivasan, R., & Uthamasamy, S. (2005). Studies to elucidate antibiosis resistance in selected tomato accessions against fruitworm, Helicoverpa armigera Hubner (Lepidoptera: Noctuidae). Resistant Pest Management Newsletter, 14(2), 24-26.
[36] Pavan, F., Girolami, V., Cecchini, A., & Turbian, E. (1993). Evolution of damage of grape berry moths, Lobesia botrana (Den. and Schiff.) and Eupoecilia ambiguella (Hb.), in north-eastern Italy and chemical control. Redia, 76(2), 417-431. https:// www.cabi.org/isc/abstract/19951109003
[37] Klun, J. A., Guthrie, W., Hallauer, A. R., & Russell, W. (1970). Genetic Nature of the Concentration of 2, 4‐dihydroxy‐7‐methoxy 2H‐l, 4‐benzoxazin‐3 (4H)‐one and Resistance to the European Corn Borer in a Diallel Set of Eleven Maize Inbreds. Crop Science, 10(1), 87-90. https://doi.org/10.2135/cropsci1970.0011183X001000010032x
[38] Rana, J. S. (2005). Performance of Lipaphis erysimi (Homoptera: Aphididae) on different Brassica species in a tropical environment. Journal of Pest Science, 78(3), 155-160. https://doi.org/10.1007/s10340-005-0088-3
[39] Panda, N., & Khush, G. S. (1995). Host Plant Resistance to Insects. CAB International. https://books.google.com/books?id=xe3wAAAAMAAJ
[40] Renwick, J. A. A. (1898). Chemical ecology of oviposition in phytophagous insects. Experientia, 45(3), 223-228.
[41] Pasqualini, E., Civolani, S., Musacchi, S., Ancarani, V., Dondini, L., Robert, P., & Baronio, P. (2006). Cacopsylla pyri behaviour on new pear selections for host resistance programs. Bulletin of Insectology, 59(1), 27-37. http://www.bulletinofin sectology.org/pdfarticles/vol59-2006-027-037pasqualini.pdf
[42] David, H., & Joseph, K. (1984). Mechanism of resistance in sugar-cane against the internode borer, Chilo sacchariphagus indicus (Kapur). Proceedings of the Sugar Technologists Association of India, 48(1), 43-58.