بهینه‌سازی توان راکتور هسته‌ای با درایو موتور رلوکتانس سوئیچی به کمک الگوریتم‌های تکامل تفاضلی و کرم شب‌تاب

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 عضو هیئت علمی، دپارتمان مهندسی برق و کامپیوتر، آموزشکده شهید بهشتی پسران کرج، دانشگاه فنی و حرفه ای استان البرز، ایران.

2 کارشناسی ارشد، مدیر نیروگاه ایتکو، تهران، ایران.

3 دکتری، دپارتمان مهندسی برق و کامپیوتر، آموزشکده شهید بهشتی پسران کرج، دانشگاه فنی و حرفه ای استان البرز، ایران.

چکیده

در چند دهه اخیر، تکنیک‌های بهینه‌سازی الهام گرفته از طبیعت، محبوبیت ویژهای را در مهندسی تجربه کرده‌اند. این تکنیک‌ها رقابت سختی را در مقایسه با روش‌های عددی سنتی دارند که گرفتار پیچیدگی پیوستگی هستند و معمولاً از یک جستجوی مبتنی بر گرادیان حساس به راه‌حل اولیه، استفاده می‌کنند. درحالی‌که تکنیک‌های الهام گرفته از طبیعت اولیه به‌طور خاص توسط متغیرهای بهبودیافته و تکاملی، بررسی شده‌اند. روش‌های محاسبه مبتنی بر جمعیت به‌ویژه برای حل مشکلات چندهدفه به دلیل توانایی تولید راه‌حل‌های بهینه پارتو  در یک اجرا، جذاب هستند. در این مقاله از دو الگوریتم تکامل تفاضلی و کرم شب‌تاب به‌عنوان معیارهای عملکرد موتور رلوکتانس سوئیچی به‌عنوان درایو میله کنترل در یک نیروگاه هسته‌ای استفاده ‌شده است. این کار، با هدف غلبه و بهبود بخشیدن بر نقطه‌ضعف قابل‌توجه موتور رلوکتانس سوئیچی که دارای گشتاور موج‌دار است، به کمک کنترل جریان موتور بر اساس کنترلر PI در یک کنترلر حلقه بسته، انجام می‌شود. نتایج شبیه‌سازی، اثربخشی و مزیت عملکرد موتور رلوکتانس سوئیچی را در نرم‌افزار MATLAB/SIMULINK در زمان واقعی، نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of Nuclear Reactor Power with Control Rods Driven by Switched Reluctance Motor (SRM) With Differential Evolution and Firefly Algorithms

نویسندگان [English]

  • Farzaneh Mohammadi 1
  • Mohammad Molaei 2
  • Omid Afra 3
1 Faculty Member, Department of Electrical and Computer Engineering, Faculty of Shahid Beheshti, Alborz Branch, Technical and Vocational University (TVU), Alborz, Iran.
2 M.Sc. , Power Plant Manager of ITCO Company, Tehran, Iran.
3 PhD, Department of Electrical and Computer Engineering, Faculty of Shahid Beheshti, Alborz Branch, Technical and Vocational University (TVU), Alborz, Iran.
چکیده [English]

Over the previous few decades, bio-inspired (BI) organic process improvement techniques have experienced extraordinary popularity in the field of engineering. These techniques gift a troublesome competition to ancient numerical procedures that suffer from convexity and continuity assumptions and that usually use a gradient based mostly search that's sensitive to the initial resolution. Whereas initial BI techniques specially have been investigated by novel and improved variants. The population primarily based computing strategies are notably engaging for finding multi-objective (MO) problems due to their capability of producing an outsized variety of Pareto-optimal solutions in one run. In this paper, two algorithms of firefly and differential evolution concept is proposed as a performance metrics for switched reluctance motor (SRM) as control rod drive in small modular reactor. This work aims to prevail and amend the remarkable drawback of switched reluctance motor, which is torque ripple, by executed current control of the motor based on the PI controller in a closed-loop controller. Furthermore, the output power of the plant is optimized to trace the reference properly. The effectiveness and advantage of the system control scheme are presented in MATLAB software in real-time.

کلیدواژه‌ها [English]

  • Small Modular Reactor
  • Control Rod
  • Switched reluctance motor
  • Firefly Algorithm
  • Differential evolution algorithm
  1.  

    1. Boyd.S.; Boyd.S.P.; Vandenberghe.L. (2004),Convex optimization: Cambridge university press.
    2. Millie.P.; Hira.Z.; Garcia-Hernandez.L.; Ajith.A. (2020)."Differential Evolution: A review of more than two decades of research". Engineering Applications of Artificial Intelligence.90:103479.
    3. Sree.R.KS.; Sankaravadivel.M. (2018)."Design and performance comparison of permanent magnet brushless motors and switched reluctance motors for extended temperature applications". Progress In Electromagnetics Research.67:137-46.
    4. Andrada.P.; Blanque.B.; Martinez.E.; Torrent. M. (2013)."A novel type of hybrid reluctance motor drive". IEEE transactions on industrial electronics.61(8):4337-45.
    5. Ortiz.JJ.; Castillo.A.; Montes. JL.; Perusquía.R. (2007)."A new system to fuel loading and control rod pattern optimization in boiling water reactors". Nuclear Science and Engineering.157(2):236-44.
    6. Chaong.L.; Bo-Feng.L. (2012)."Automatic pressurized water reactor loading pattern design using ant colony algorithms". Annals of Nuclear Energy.43:91-8.
    7. Ammar.A. (2018)."Optimization of fuel loading pattern for a material test reactor using swarm intelligence". Progress in Nuclear Energy.103:45-50.
    8. Waintraub.M.; Schirru.R.; Pereira.CM. (2009)."Multiprocessor modeling of parallel Particle Swarm Optimization applied to nuclear engineering problems". Progress in Nuclear Energy.51(6-7):680-8.
    9. de Moura Meneses.d.M.; Alvarenga.A.; Machado.M.D.; Schirru.R. (2009)."Particle swarm optimization applied to the nuclear reload problem of a pressurized water reactor". Progress in Nuclear Energy.51(2):319-26.
    10. Safarzadeh.O.; Zolfaghari.A.; Norouzi.A.; Minuchehr.H. (2011)."Loading pattern optimization of PWR reactors using Artificial Bee Colony". Annals of Nuclear Energy.38(10):2218-26.
    11. Oliveira.De.; Santos.I.M.;  Schirru.R. (2011)."Swarm intelligence of artificial bees applied to in-core fuel management optimization". Annals of Nuclear Energy.38(5):1039-45.
    12. Poursalehi.N.; Zolfaghari.A.; Minuchehr.A. (2013)."PWR loading pattern optimization using Harmony Search algorithm". Annals of Nuclear Energy.53:288-98.
    13. Poursalehi.N.; Zolfaghari.A.; Minuchehr.A. Moghaddam.H. (2013)."Continuous firefly algorithm applied to PWR core pattern enhancement". Nuclear Engineering and Design.258:107-15.
    14. Meneses.d.M.; Alvarenga.A.; Lenilson Moreira.A.; Fernando.N.N.; Da Silva.PV.; Schirru.R. (2018)."Application of metaheuristics to Loading Pattern Optimization problems based on the IAEA-3D and BIBLIS-2D data". Annals of Nuclear Energy.111:329-39.
    15. Schlünz.EB.; Bokov. PM.; van Vuuren.JH. (2016)."An optimisation-based decision support system framework for multi-objective in-core fuel management of nuclear reactor cores". South African Journal of Industrial Engineering.27(3):201-9.
    16. Schlünz.EB.; Bokov. PM.; van Vuuren.JH. (2018)."Multiobjective in-core nuclear fuel management optimisation by means of a hyperheuristic". Swarm and Evolutionary Computation.42:58-76.
    17. Jayalal.ML.; Murty.SS.; Baba.MS. (2014)."A survey of genetic algorithm applications in nuclear fuel management". J Nucl Eng Technol.4(1):45-62.
    18. Ortiz.JJ.; Requena.I. (2004)."An order coding genetic algorithm to optimize fuel reloads in a nuclear boiling water reactor". Nuclear Science and Engineering.146(1):88-98.
    19. Martín-del-Campo.C.; Palomera-Pérez.M-Á.; François.J-L. (2009)."Advanced and flexible genetic algorithms for BWR fuel loading pattern optimization". Annals of Nuclear Energy.36(10):1553-9.
    20. Campo.del.; Martı́n.C.; Francois.J.L.; Lopezdel.H.A. (2001)."AXIAL: a system for boiling water reactor fuel assembly axial optimization using genetic algorithms". Annals of Nuclear Energy.28(16):1667-82.
    21. Huo.X.; Xie.Z. (2005)."A novel channel selection method for CANDU refuelling based on the BPANN and GA techniques". Annals of nuclear energy.32(10):1081-99.
    22. Quang-Binh.Do.; Hangbok.Choi.; Gyu-homg.Roh. (2006)."An evolutionary optimization of the refueling simulation for a CANDU reactor". IEEE transactions on nuclear science.53(5):2957-61.
    23. Surendra.M.; Modak.RS.; Ganesan.S. (2009)."Optimization of thorium loading in fresh core of Indian PHWR by evolutionary algorithms". Annals of nuclear energy.36(7):948-55.
    24. Zarei.M. (2019)."An optimization based output power regulation in small modular reactors". Nuclear Engineering and Design.344:144-52.
    25. Pratapgiri.SP.; Prasad.P.V.N. ((2011))." Direct Instantaneous Torque Control of 4 Phase 8/6 Switched Reluctance Motor". International Journal of Power Electronics and Drive Systems (IJPEDS).1. 10.11591/ijpeds.v1i2.102. .
    26. Hoang.LH.; Chakir.M. (2010),  "Optimizing the performance of a switched reluctance generator by simulation".  The XIX International Conference on Electrical Machines-ICEM 2010.IEEE;  p. 1-6.
    27. Yueying.Z.; Chengwen.Z.; Junxia.Z.; Zhaopeng.G. (2020)."Vibration Control for Electric Vehicles With In-Wheel Switched Reluctance Motor Drive System". IEEE Access.8:7205-16.
    28. Pasquesoone.G. (2011), Controls for High Performance Three-Phase Switched Reluctance Motors: University of Akron.
    29. Bae. H. K. (2000). Control of switched reluctance motors considering mutual inductance: Virginia Tech.
    30. Hong-sun.L.; Gray.R.;  Lobo.N.; Renjith.K. (2005).  "Novel flux linkage control of switched reluctance motor drives using observer and neural network-based correction methods".  31st Annual Conference of IEEE Industrial Electronics Society, 2005 IECON 2005.IEEE;  p. 6 pp.