Investigating Supercapacitor Performance and Electrochemical Energy Storage Using New CuSn(OH)6 Nano-Cubes

Document Type : Original Article

Authors

Department of Industrial Chemistry, Faculty of Chamran, Guilan Branch, Technical and Vocational University (TVU), Guilan, Iran.

10.48301/kssa.2023.379999.2518

Abstract

Energy is the source of life obtained by exploiting various natural resources, including fossil fuels. Nowadays, one of the most important challenges in this field is the combination of production sources with electric energy storage systems. Supercapacitors have received a great deal of attention as a new technology for producing and storing electrical energy. In this research, a simple hydrothermal method was used to prepare bimetallic mixed hydroxide CuSn(OH)6 on a nickel foam substrate, and then the electrochemical behavior of the electrode was tested for use in electrochemical supercapacitors. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were used to examine the morphology and structure of the synthesized electrodes. In addition, X-ray energy dispersive (EDX) and elemental mapping techniques were used to identify the composition and phase of the produced nanostructures. The electrochemical performance of modified electrodes in 2 M KOH electrolyte solution was investigated by several electrochemical methods including cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). The electrode prepared in this study showed high specific capacity (2012.84 F g-1 at a current density of 1 A g-1) and excellent cycle stability (90.44% after 3000 cycles). Moreover, this supercapacitor electrode's maximum energy and power density were 140.88 Wh kg-1 and 29.16 kW kg-1, respectively.

Keywords

Main Subjects


[1] Díaz-González, F., Sumper, A., Gomis-Bellmunt, O., & Villafáfila-Robles, R. (2012). A review of energy storage technologies for wind power applications. Renewable and Sustainable Energy Reviews, 16(4), 2154-2171. https://doi.org/10.1016/j.rser.2012.01.029
[2] Dubal, D. P., Ayyad, O., Ruiz, V., & Gómez-Romero, P. (2015). Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chemical Society Reviews, 44(7), 1777-1790. https://doi.org/10.1039/C4CS00266K
[3] Ozoemena, K. I., & Chen, S. (2016). Nanomaterials in advanced batteries and supercapacitors. Springer. https://doi.org/10.1007/978-3-319-26082-2
[4] Pandolfo, A. G., & Hollenkamp, A. F. (2006). Carbon properties and their role in supercapacitors. Journal of Power Sources, 157(1), 11-27. https://doi.org/10.1016/j.jpowsour.2006.0 2.065
[5] Wang, H., Casalongue, H. S., Liang, Y., & Dai, H. (2010). Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. Journal of the American Chemical Society, 132(21), 7472-7477. https://doi.org/10.1021/ja102267j
[6] Li, H., Gao, Y., Wang, C., & Yang, G. (2015). A Simple Electrochemical Route to Access Amorphous Mixed-Metal Hydroxides for Supercapacitor Electrode Materials. Advanced Energy Materials, 5(6), 1401767. https://doi.org/10.1002/aenm.201401767
[7] Koryta, J., Dvorak, W., & Kavan, L. (1987). Principles of Electrochemistry Second Edition (2 ed.). John Wiley & Sons. https://www.amazon.com/Principles-Electrochemistry-Jiri-Koryta/dp/0471938386
[8] Peng, C., Zhang, S., Jewell, D., & Chen, G. Z. (2008). Carbon nanotube and conducting polymer composites for supercapacitors. Progress in Natural Science, 18(7), 777-788. https://doi.org/10.1016/j.pnsc.2008.03.002
[9] Zhai, Y., Dou, Y., Zhao, D., Fulvio, P. F., Mayes, R. T., & Dai, S. (2011). Carbon Materials for Chemical Capacitive Energy Storage. Advanced Materials, 23(42), 4828-4850. https://doi.org/10.1002/adma.201100984
[10] Yu, G., Xie, X., Pan, L., Bao, Z., & Cui, Y. (2013). Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2(2), 213-234. https://d oi.org/10.1016/j.nanoen.2012.10.006
[11] Li, B., Zhang, G-X., Huang, K-S., Qiao, L-F., & Pang, H. (2017). One-step synthesis of CoSn(OH)6 nanocubes for high-performance all solid-state flexible supercapacitors. Rare Metals, 36(5), 457-464. https://doi.org/10.1007/s12598-017-0890-0
[12] Barai, H. R., Rahman, M. M., Adeel, M., & Joo, S. W. (2022). MnSn(OH)6 derived Mn2SnO4@Mn2O3 composites as electrode materials for high-performance Supercapacitors. Materials Research Bulletin, 148, 111678. https://doi.org/10.1016/j.materresbull.20 21.111678
[13] Chen, C., Zheng, X., Yang, J., & Wei, M. (2014). The ZnSn(OH)6 nanocube–graphene composite as an anode material for Li-ion batteries. Physical Chemistry Chemical Physics, 16(37), 20073-20078. https://doi.org/10.1039/C4CP02842B
[14] Bulakhe, R. N., Nguyen, V. Q., Tuma, D., Lee, Y. R., Zhang, H., Zhang, S., & Shim, J-J. (2018). Chemically grown 3D copper hydroxide electrodes with different morphologies for high-performance asymmetric supercapacitors. Journal of Industrial and Engineering Chemistry, 66, 288-297. https://doi.org/10.1016/j.jiec.2018.05.043
[15] Zheng, X., Ye, Y., Yang, Q., Geng, B., & Zhang, X. (2016). Ultrafine nickel–copper carbonate hydroxide hierarchical nanowire networks for high-performance supercapacitor electrodes. Chemical Engineering Journal, 290, 353-360. https://doi.org/10.1016/j.cej.2016.01 .076
[16] Arbizzani, C., Mastragostino, M., & Soavi, F. (2001). New trends in electrochemical supercapacitors. Journal of Power Sources, 100(1-2), 164-170. https://doi.org/10.10 16/S0378-7753(01)00892-8
[17] Katz, E., & Willner, I. (2003). Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors. Electroanalysis, 15(11), 913-947. https://doi.org/10.1002/elan.200390114
[18] Chu, A., & Braatz, P. (2002). Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles: I. Initial characterization. Journal of Power Sources, 112(1), 236-246. https://doi.org/10.101 6/S0378-7753(02)00364-6
[19] Lee, Y., & Geckeler, K. E. (2010). Carbon Nanotubes in the Biological Interphase: The Relevance of Noncovalence. Advanced Materials, 22(36), 4076-4083. https://doi.or g/10.1002/adma.201000746
[20] Zhong, S-L., Xu, R., Wang, L., Li, Y., & Zhang, L-F. (2011). CuSn(OH)6 submicrospheres: Room-temperature synthesis, growth mechanism, and weak antiferromagnetic behavior. Materials Research Bulletin, 46(12), 2385-2391. https://doi.org/10.1016/j.materres bull.2011.08.053
[21] Veerasubramani, G. K., Krishnamoorthy, K., Radhakrishnan, S., Kim, N-J., & Kim, S. J. (2014). Synthesis, characterization, and electrochemical properties of CoMoO4 nanostructures. International Journal of Hydrogen Energy, 39(10), 5186-5193. http s://doi.org/10.1016/j.ijhydene.2014.01.069
[22] Dong, C., Wang, Y., Xu, J., Cheng, G., Yang, W., Kou, T., Zhang, Z., & Ding, Y. (2014). 3D binder-free Cu2O@Cu nanoneedle arrays for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2(43), 18229-18235. https://doi. org/10.1039/C4TA04329D
[23] Guo, D., Zhang, P., Zhang, H., Yu, X., Zhu, J., Li, Q., & Wang, T. (2013). NiMoO4 nanowires supported on Ni foam as novel advanced electrodes for supercapacitors. Journal of Materials Chemistry A, 1(32), 9024-9027. https://doi.org/10.1039/C3TA11487B
[24] Li, K-B., Shi, D-W., Cai, Z-Y., Zhang, G-L., Huang, Q-A., Liu, D., & Yang, C-P. (2015). Studies on the equivalent serial resistance of carbon supercapacitor. Electrochimica Acta, 174, 596-600. https://doi.org/10.1016/j.electacta.2015.06.008
[25] Saraf, M., Rajak, R., & Mobin, S. M. (2016). A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors. Journal of Materials Chemistry A, 4(42), 16432-16445. https://doi.org/10.1039/C6TA06470A
[26] Wang, J-G., Kang, F., & Wei, B. (2015). Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Progress in Materials Science, 74, 51-124. h ttps://doi.org/10.1016/j.pmatsci.2015.04.003
[27] Aruchamy, G., & Thangavelu, S. (2020). Bifunctional CoSn(OH)6/MnO2 composite for solid-state asymmetric high power density supercapacitor and for an enhanced OER. Electrochimica Acta, 344, 136141. https://doi.org/10.1016/j.electacta.2020.136141
[28] Sun, X., Wang, G., Sun, H., Lu, F., Yu, M., & Lian, J. (2013). Morphology controlled high performance supercapacitor behaviour of the Ni–Co binary hydroxide system. Journal of Power Sources, 238, 150-156. https://doi.org/10.1016/j.jpowsour.2013.0 3.069
Volume 20, Issue 3
Engineering
December 2024
Pages 663-681
  • Receive Date: 23 April 2023
  • Revise Date: 11 September 2023
  • Accept Date: 04 October 2023