Design, Analysis, and Simulation of a Low Size Ultrasonic Piezoelectric Micro-Generator for Implantable Biosensors

Document Type : Original Article

Authors

1 Assistant Professor, Department of Electrical and Electronic Engineering, Technical and Vocational University, Tehran, Iran.

2 Professor, Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran.

3 MSc Student, Department of Electrical and Electronic Engineering, Faculty of Electrical Engineering, Urmia University, Urmia, Iran.

4 Lecturer, Department of Electrical and Electronic Engineering, Technical and Vocational University, Tehran, Iran.

5 PhD, Department of Mechanical Engineering, Technical and Vocational University, Tehran, Iran.

Abstract

This paper presents a new piezoelectric-based ultrasonic micro-generator to supply the required power of implantable medical devices in the human body. Unlike previous ones, this structure uses sound waves with higher frequency to extract energy. Despite the smaller dimensions, the extractable power of the micro-generator was increased. Using aluminum nitrate instead of toxic materials such as PZT in the structure of the designed microgenerator made it more compatible with the human body and the environment. The presented design occupies only 15.7×10-6 cm3 and can produce 260 μW under the applied acoustic pressure of 1000 Pa at the frequency of 1.158 MHz. Various simulations were performed in the COMSOL software to evaluate the performance of the proposed micro-generator. In addition, simulation results were verified by the values obtained from the theoretical and numerical analyses. According to the obtained results and other salient features, the proposed structure is a suitable candidate for use in implantable medical devices in the human body.

Keywords

Main Subjects


[1] Hamedani, N., & Karimi Moridani, M. (2021). Design and Manufacturing of Gloves for Intelligent Quantification of Hand Vibration. Karafan Quarterly Scientific Journal, 18(3), 79-99. https://doi.org/10.48301/kssa.2021.282479.1489
[2] Karimi, H. (2021). Sensor Node Clustering Algorithm with Respect to Node Density in Wireless Sensor Networks. Karafan Quarterly Scientific Journal, 18(3), 253-272. h ttps://doi.org/10.48301/kssa.2021.269713.1360
[3] Joung, Y-H. (2013). Development of implantable medical devices: from an engineering perspective. International neurourology journal, 17(3), 98-106. https://doi.org/10.5 213/inj.2013.17.3.98
[4] Mathúna, C. Ó., O’Donnell, T., Martinez-Catala, R. V., Rohan, J., & O’Flynn, B. (2008). Energy scavenging for long-term deployable wireless sensor networks. Talanta, 75(3), 613-623. https://doi.org/10.1016/j.talanta.2007.12.021
[5] Zheng, Q., Shi, B., Li, Z., & Wang, Z. L. (2017). Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems. Advanced Science, 4(7), 1-23. https://doi.org/10.1002/advs.201700029
[6] Roberts, P., Stanley, G., & Morgan, J. M. (2008). Harvesting the energy of cardiac motion to power a pacemaker. Circulation, 118(suppl_18), 679-680. https://doi.org/10.116 1/circ.118.suppl_18.S_679-c
[7] Damya, A., Abbaspour Sani, E., & Rezazadeh, G. (2020). An innovative piezoelectric energy harvester using clamped–clamped beam with proof mass for WSN applications. Microsystem Technologies, 26(10), 3203-3211. https://doi.org/10.1007/s00542-018-3890-6
[8] Damya, A., Abbaspour Sani, E., & Rezazadehe, G. (2020). Designing and Analyzing of a Piezoelectric Energy Harvester with Tunable Natural Frequency for WSN Application. Tabriz Journal Of Electrical Engineering, 50(3), 1205-1213. https://www.sid.ir/paper/955 799/en
[9] Lueke, J., & Moussa, W. A. (2011). MEMS-Based Power Generation Techniques for Implantable Biosensing Applications. Sensors, 11(2), 1433-1460. https://doi.org/10. 3390/s110201433
[10] Damya, A., Abbaspour Sani, E., & Rezazadeh, G. (2019). Designing and analyzing of a piezoelectric energy harvester with tunable system natural frequency for WSN and biosensing applications. Microsystem Technologies, 25(6), 2493-2500. https://doi.o rg/10.1007/s00542-018-4150-5
[11] Yu, H., Zhou, J., Deng, L., & Wen, Z. (2014). A Vibration-Based MEMS Piezoelectric Energy Harvester and Power Conditioning Circuit. Sensors, 14(2), 3323-3341. https ://doi.org/10.3390/s140203323
[12] Chawanda, A., & Luhanga, P. (2012). Piezoelectric energy harvesting devices: an alternative energy source for wireless sensors. Smart Materials Research, 2012, 1-13. https://doi.or g/10.1155/2012/853481
[13] Horowitz, S. B., Sheplak, M., Cattafesta, L. N., & Nishida, T. (2006). A MEMS acoustic energy harvester. Journal of Micromechanics and Microengineering, 16(9), 13-16. https://doi.org/10.1088/0960-1317/16/9/S02
[14] Khan, F. U. (2018). Three degree of freedom acoustic energy harvester using improved Helmholtz resonator. International Journal of Precision Engineering and Manufacturing, 19(1), 143-154. https://doi.org/10.1007/s12541-018-0017-z
[15] Sun, K. H., Kim, J. E., Kim, J., & Song, K. (2017). Sound energy harvesting using a doubly coiled-up acoustic metamaterial cavity. Smart Materials and Structures, 26(7), 075011. https://doi.org/10.1088/1361-665X/aa724e
[16] Yuan, M., Cao, Z., Luo, J., & Ohayon, R. (2018). Acoustic metastructure for effective low-frequency acoustic energy harvesting. Journal of Low Frequency Noise, Vibration and Active Control, 37(4), 1015-1029. https://doi.org/10.1177/1461348418794832
[17] Zhang, X., Zhang, H., Chen, Z., & Wang, G. (2018). Simultaneous realization of large sound insulation and efficient energy harvesting with acoustic metamaterial. Smart Materials and Structures, 27(10), 105018. https://doi.org/10.1088/1361-665X/aade 3e
[18] Mitcheson, P. D., Green, T. C., & Yeatman, E. M. (2007). Power processing circuits for electromagnetic, electrostatic and piezoelectric inertial energy scavengers. Microsystem Technologies, 13(11), 1629-1635. https://doi.org/10.1007/s00542-006-0339-0
[19] Kherbeet, A. S., Salleh, H., Salman, B. H., & Salim, M. (2015). Vibration-based piezoelectric micropower generator for power plant wireless monitoring application. Sustainable Energy Technologies and Assessments, 11, 42-52. https://doi.org/10.1016/j.seta.2015.05.004
[20] Jeon, Y. B., Sood, R., Jeong, J. h., & Kim, S. G. (2005). MEMS power generator with transverse mode thin film PZT. Sensors and Actuators A: Physical, 122(1), 16-22. https://doi.org/10.1016/j.sna.2004.12.032
[21] Khan, F. U., & Izhar, I. (2013). Acoustic-based electrodynamic energy harvester for wireless sensor nodes application. International Journal of Materials Science and Engineering 1(2), 72-78. https://doi.org/10.12720/ijmse.1.2.72-78
[22] Li, B., & You, J. H. (2011). Harvesting ambient acoustic energy using acoustic resonators. Proceedings of Meetings on Acoustics, 12(1), 1-8. https://doi.org/10.1121/1.3616359
[23] Noh, S., Lee, H., & Choi, B. (2013). A study on the acoustic energy harvesting with Helmholtz resonator and piezoelectric cantilevers. International Journal of Precision Engineering and Manufacturing, 14(9), 1629-1635. https://doi.org/10.1007/s12541-013-0220-x
[24] Jackson, N., O’Keeffe, R., Waldron, F., O’Neill, M., & Mathewson, A. (2014). Evaluation of low-acceleration MEMS piezoelectric energy harvesting devices. Microsystem Technologies, 20(4), 671-680. https://doi.org/10.1007/s00542-013-2006-6
[25] Foppl, A. (1909). Vorlesungen uber technicsche mechanik (2ed.). Benedictus Gotthelf Teubner. https://books.google.com/books/about/Vorlesungen_%C3%BCber_technische_Mechanik.html?id=eLUCD_-r1jkC
[26] Abazari, A. M., Safavi, S. M., Rezazadeh, G., & Villanueva, L. G. (2015). Modelling the Size Effects on the Mechanical Properties of Micro/Nano Structures. Sensors, 15(11), 28543-28562. https://doi.org/10.3390/s151128543
[27] Shi, B-B., Sun, J-Y., Huang, T-K., & He, X-T. (2021). Closed-Form Solution for Circular Membranes under In-Plane Radial Stretching or Compressing and Out-of-Plane Gas Pressure Loading. Mathematics, 9(11), 1-26. https://doi.org/10.3390/math9111238
[28] Sun, J-Y., Zhang, Q., Wu, J., Li, X., & He, X-T. (2021). Large Deflection Analysis of Peripherally Fixed Circular Membranes Subjected to Liquid Weight Loading: A Refined Design Theory of Membrane Deflection-Based Rain Gauges. Materials, 14(20), 1-23. https://doi.org/10.3390/ma14205992
[29] Nayfeh, A. H., & Pai, P. F. (2008). Linear and nonlinear structural mechanics. John Wiley & Sons. https://onlinelibrary.wiley.com/doi/book/10.1002/9783527617562
[30] Rahimi, Z., Rezazadeh, G., & Sumelka, W. (2020). A non-local fractional stress–strain gradient theory. International Journal of Mechanics and Materials in Design, 16(2), 265-278. https://doi.org/10.1007/s10999-019-09469-7
[31] Harris, F. E. (2014). Mathematics for physical science and engineering: symbolic computing applications in Maple and Mathematica. Academic Press. https://www.amazon.com/M athematics-Physical-Science-Engineering-Applications/dp/0128010002
[32] Mary, D. W. (1938). Vibrations of free circular plates. Part 1: Normal modes. Proceedings of the Physical Society, 50(1), 70. https://doi.org/10.1088/0959-5309/50/1/306
[33] Senjanović, I., Hadžić, N., & Vladimir, N. (2017). Vibration analysis of thin circular plates with multiple openings by the assumed mode method. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 231(1), 70-85. https://doi.org/10.1177/1475090215621578
[34] Wu, T. Y., Wang, Y. Y., & Liu, G. R. (2002). Free vibration analysis of circular plates using generalized differential quadrature rule. Computer Methods in Applied Mechanics and Engineering, 191(46), 5365-5380. https://doi.org/10.1016/S0045-7825(02)00463-2
[35] Żur, K. K., & Jankowski, P. (2018). Exact analytical solution for free axisymmetric and non-axisymmetric vibrations of FGM porous circular plates. Preprints, 1-23. https:// doi.org/10.20944/preprints201809.0295.v2