رفتار فشاری و دوام بتن حاوی سنگ‌دانه‌های ضایعاتی جایگزین درشت‌دانه و پودرسنگ مرمر جایگزین سیمان

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 دانشجوی دکترای ، گروه سازه، دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران.

2 دانشیار، گروه سازه، دانشکده مهندسی و فناوری، دانشگاه مازندران، بابلسر، ایران.

چکیده

بتن­های سبز به‌عنوان بتن­های دوست‌دار محیط‌زیست شناخته می­شوند که با استفاده از مواد بازیافتی قابل تولید هستند. در این پژوهش رفتار فشاری و دوام بتن سبز حاوی سنگ‌دانه­های ضایعاتی (ضایعات سنگ‌ساب) جایگزین درشت‌دانه و پودرسنگ مرمر جایگزین سیمان به‌صورت آزمایشگاهی ارزیابی شده است. در این مقاله 10 طرح مخلوط به همراه طرح مخلوط شاهد ساخته شده و نتایج آزمونه‌های بتنی با یکدیگر مقایسه شده است. متغیرهای اصلی شامل درصد حجمی سنگ‌دانه­های ضایعاتی جایگزین شن با مقادیر 0، 25، 50 و 100 درصد و همچنین، درصد حجمی پودر سنگ مرمر جایگزین سیمان با مقادیر 0، 10 و 20 درصد می­باشد. آزمایش­های مقاومت فشاری در 28 روز و نیز درصد جذب آب و تخلخل برای بررسی دوام بتن انجام شده است. طبق نتایج به‌دست‌آمده، سنگ‌دانه­های ضایعاتی جایگزین شن، تأثیر منفی و پودر سنگ مرمر جایگزین سیمان، تأثیر مثبتی بر مقاومت فشاری بتن داشته­اند. با جایگزینی 100 درصد سنگ‌دانه­های ضایعاتی به جای شن طبیعی، کاهش مقاومت 49 درصد نسبت به آزمونه شاهد و با جایگزینی 10 درصد پودرسنگ مرمر به‌جای سیمان، افزایش مقاومت 4/13 درصد نسبت به آزمونه شاهد مشاهده می­شود که این میزان به‌ترتیب کمترین و بیشترین میزان تغییرات مقاومت فشاری بتن در مقایسه با آزمونه شاهد می­باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Compressive Behavior and Durability of Concrete Containing Waste Aggregates as A Replacement of Coarse Aggregates and Marble Powder as a Replacement of Cement

نویسندگان [English]

  • Seyed Mohammad Reza Hasani 1
  • Mahdi Nematzadeh 2
1 PhD Candidate, Faculty of Civil Engineering, Babol Noshirvani University, Babol, Iran.
2 Associate Professor, Department of Civil Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran.
چکیده [English]

Green concrete can be produced as environmentally friendly concrete using recycled materials. In this study, the compressive and endurance behavior of green concrete containing waste aggregates as a replacement to coarse (gravel) and cement-replaced marble powders was evaluated experimentally. In the present research, 10 mix designs in addition to the control sample mix design were constructed and compared. The main variables included the volume percentage of waste aggregates as replacement sand with percentages of 0, 25, 50 and 100, and the volume percentage of marble powder as replacement cement with percentages of 0, 10 and 20. Compressive strength at 28 days and water absorption percentage and density tests were performed to evaluate the endurance of concrete. According to the results, gravel substitute waste stone had a negative effect and cement substitute marble powder had a positive effect on the compressive strength of concrete. By replacing gravel with 100% waste stone, approximately 49% reduction in strength was observed compared to the control sample, and by replacing cement with 10% marble powder, approximately 13.4% increase in resistance was observed compared to the control sample, demonstrating the minimum and maximum changes in compressive strength of concrete compared to the control test, respectively.

کلیدواژه‌ها [English]

  • Marble powder
  • Waste aggregates
  • Endurance
  • Compressive strength
  • Porosity
[1] Ann, K. Y., Moon, H. Y., Kim, Y. B., & Ryou, J. (2008). Durability of recycled aggregate concrete using pozzolanic materials. Waste Management, 28(6), 993-999. https://doi.or g/10.1016/j.wasman.2007.03.003
[2] Awoyera, P. O., & Okoro, U. C. (2019). Filler-Ability of Highly Active Metakaolin for Improving Morphology and Strength Characteristics of Recycled Aggregate Concrete. Silicon, 11(4), 1971-1978. https://doi.org/10.1007/s12633-018-0017-8
[3] Binici, H. (2007). Effect of crushed ceramic and basaltic pumice as fine aggregates on concrete mortars properties. Construction and Building Materials, 21(6), 1191-1197. https://doi.org/10.1016/j.conbuildmat.2006.06.002
[4] Binici, H., Shah, T., Aksogan, O., & Kaplan, H. (2008). Durability of concrete made with granite and marble as recycle aggregates. Journal of Materials Processing Technology, 208(1-3), 299-308. https://doi.org/10.1016/j.jmatprotec.2007.12.120
[5] Karaşahin, M., & Terzi, S. (2007). Evaluation of marble waste dust in the mixture of asphaltic concrete. Construction and Building Materials, 21(3), 616-620. https://doi.org/10.1016/j. conbuildmat.2005.12.001
[6] Mazzilli, B., Palmiro, V., Saueia, C., & Nisti, M. B. (2000). Radiochemical characterization of Brazilian phosphogypsum. Journal of Environmental Radioactivity, 49(1), 113-122. http s://doi.org/10.1016/S0265-931X(99)00097-1
[7] Somlai, J., Jobbágy, V., Németh, C., Gorjánácz, Z., Kávási, N., & Kovács, T. (2005). Radiation dose from coal slag used as building material in the Transdanubian region of Hungary. Radiation Protection Dosimetry, 118(1), 82-87. https://doi.org/10.1093/rpd/nci323
[8] Al-Manaseer, A., & Dalal, T. (1997). Concrete containing plastic aggregates. Concrete international, 19(8), 47-52. https://www.semanticscholar.org/paper/Concrete-Containing-Plastic-Aggregates-Al-Manaseer-Dalal/3159475ef5fccb7607a0bbe37b866aaf6ad7bdfe
[9] Soroushian, P., Plasencia, J., & Ravanbakhsh, S. (2003). Assessment of reinforcing effects of recycled plastic and paper in concrete. American Concrete Institute Materials Journal, 100(3), 203-207. https://www.researchgate.net/publication/280015894_Assessment_of_r einforcing_effects_of_recycled_plastic_and_paper_in_concrete
[10] Rahat Dahmardeh, S., & Mirabi Moghaddam, M. H. (2019). Assessment of the idea of using various types of plastic waste in concrete production: engineering properties. Karafan Quarterly Scientific Journal, 16(1), 151-168. https://karafan.tvu.ac.ir/artic le_100537_538a306251ef4bb2bc9826d5c9757138.pdf
[11] Salimbahrami, S. R.,  Shakeri, R., & Habibi Hajikolae, B. (2021). Proposed Mix Design of Recycled Concrete Used in Urban Concrete Tables Using Neural Network. Karafan Quarterly Scientific Journal, 17(4), 209-230. https://doi.org/10.48301/kssa.2021.128404
[12] Anitha Selvasofia, S. D., Dinesh, A., & Sarath Babu, V. (2021). Investigation of waste marble powder in the development of sustainable concrete. Materials Today: Proceedings, 44, 4223-4226. https://doi.org/10.1016/j.matpr.2020.10.536
[13] Heidari, A., Hashempour, M., &  Tavakoli, D. (2017). Using of Backpropagation Neural Network in Estimation of Compressive Strength of Waste Concrete. Journal of Soft Computing in Civil Engineering, 1(1), 54-64. https://doi.org/10.22115/scce.2017.48040
[14] Aydın, S., Yazıcı, H., Yiğiter, H., & Baradan, B. (2007). Sulfuric acid resistance of high-volume fly ash concrete. Building and Environment, 42(2), 717-721. https://doi.org/10. 1016/j.buildenv.2005.10.024
[15] Caballero, C. E., Sanchez, Ε., Cano, U., Gonzalez, J. G., & Castano, V. (2000). On The Effect Of Fly Ash On The Corrosion Properties Of Reinforced Mortars. Corrosion Reviews, 18(2-3), 105-112. https://doi.org/10.1515/CORRREV.2000.18.2-3.105
[16] Goyal, S., Kumar, M., Sidhu, D. S., & Bhattacharjee, B. (2009). Resistance of Mineral Admixture Concrete to Acid Attack. Journal of Advanced Concrete Technology, 7(2), 273-283. https://doi.org/10.3151/jact.7.273
[17] Mane, K. M., Kulkarni, D. K., & Prakash, K. B. (2019). Prediction of Flexural Strength of Concrete Produced by Using Pozzolanic Materials and Partly Replacing NFA by MS. Journal of Soft Computing in Civil Engineering, 3(2), 65-75. https://doi.org/10.22115/scc e.2019.197000.1121
[18] Van Der Wegen, G., Polder, R. B., & Van Breugel, K. (2012). Guideline for service life design of structural concrete–a performance based approach with regard to chloride induced corrosion. Heron, 57(3), 153-168. http://citeseerx.ist.psu.edu/viewdoc/downlo ad?doi=10.1.1.1078.2508&rep=rep1&type=pdf
[19] Rodrigues, R., de Brito, J., & Sardinha, M. (2015). Mechanical properties of structural concrete containing very fine aggregates from marble cutting sludge. Construction and Building Materials, 77, 349-356. https://doi.org/10.1016/j.conbuildmat.2014.12.104
[20] Ergün, A. (2011). Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete. Construction and Building Materials, 25(2), 806-812. https://doi.org/10.1016/j.conbuildmat.2010.07.002
[21] Aliabdo, A. A., Abd Elmoaty, A. E. M., & Auda, E. M. (2014). Re-use of waste marble dust in the production of cement and concrete. Construction and Building Materials, 50, 28-41. https://doi.org/10.1016/j.conbuildmat.2013.09.005
[22] Rana, A., Kalla, P., & Csetenyi, L. J. (2015). Sustainable use of marble slurry in concrete. Journal of Cleaner Production, 94, 304-311. https://doi.org/10.1016/j.jclepro.2015.01.053
[23] Sardinha, M., Brito, J., & Rodrigues, R. (2016). Durability properties of structural concrete containing very fine aggregates of marble sludge. Construction and Building Materials, 119, 45-52. https://doi.org/10.1016/j.conbuildmat.2016.05.071
[24] Türker, P., Erdogan, B., & Erdogdu, K. (2002). Influence of marble powder on microstructure and hydration of cements. Cem. Concr. World J. TÇMB (Turkey), 7, 38-89.
[25] Şahan Arel, H. (2016). Recyclability of waste marble in concrete production. Journal of Cleaner Production, 131, 179-188. https://doi.org/10.1016/j.jclepro.2016.05.05 2
[26] Shelke, V., Pawde, P., & Shrivastava, R. (2012). Effect of marble powder with and without silica fume on mechanical properties of concrete. Journal of Mechanical and Civil Engineering, 1(1), 40-45. https://www.iosrjournals.org/iosr-jmce/papers/vol1-issue1/E01 14045.pdf
[27] Amin, E. H., Khalid, A., & Alam, A. (2014, December 28-30). Use of silica fume and marble dust as partial binding material in concrete. 1st International Conference on Emerging Trends in Engineering, Management and Sciences, Peshawar, Pakistan. http://cusit.edu.p k/icetems/Proceeding/Civil%20Engineering/PK-CE-118.pdf
[28] Zhang, S., Cao, K., Wang, C., Wang, X-h., & Sun, B. (2020). Effect of silica fume and waste marble powder on the mechanical and durability properties of cellular concrete. Construction and Building Materials, 241(5), 117980. https://doi.org/10.1016/j.conbuild mat.2019.117980
[29] American Society for Testing and Materials. (2016). Standard Specification for Concrete Aggregates (ASTM C33 / C33M:2016). American Society for Testing and Materials. htt ps://www.gso.org.sa/store/standards/GSO:738778?lang=en
[30] Khodabakhshian, A., Ghalehnovi, M., Brito, J., & Asadi Shamsabadi, E. (2017). Durability performance of structural concrete containing silica fume and marble industry waste powder. Journal of Cleaner Production, 170, 42-60. https://doi.org/10.1016/j.jclepro.201 7.09.116
[32] American Society for Testing and Materials. (2012). Standard Test Method for Slump of Hydraulic-Cement Concrete (ASTM C143/C143M-12 ). American Society for Testing and Materials. https://www.mystandards.biz/standard/astm-c143-c143m-12-1.11.2012.html
[33] American Society for Testing and Materials. (2013). Standard Test Method for Density, Absorption, and Voids in Hardened Concrete (ASTM C642-13). American Society for Testing and Materials. https://www.madcad.com/store/subscription/ASTM-C642-13/