The Influence of Point Defects on the Electronic and Magnetic Properties of WS2 Monolayer Based on Density Functional Theory

Document Type : Original Article

Authors

1 Assistant Professor, Department of Electrical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran.

2 PhD Student, Department of Electrical Engineering, Imam Ali Technical University, Technical University of Yazd, Yazd, Iran.

Abstract

The present study investigates the effect of point defects in the structure of monolithic tungsten disulfide (WS2) using basic principles. This study was performed on six vacancies to investigate their effects on the electronic and magnetic properties of WS2 monolayer. The structure under study was a supercell with 36 atoms and the atomic positions were optimized. In the present study, density functional theory calculations were performed within the framework of local density approximation. Structural analysis of this material showed that the WS2 monolayer had a direct band gap of 1.89 eV. The simulation results illustrated that depending on the type of defects in the structure and their position, the behavior of the structure can change from semiconductor to quasi-metal and non-magnetic to magnetic. For instance, the removal of one tungsten atom leads to the metallization and magnetization of the structure. Moreover, the bandgap energy of the WS2 monolayer decreased in the absence of one sulfur atom.  In addition, there was a transition from direct to indirect semiconductors and a reduction in the energy of the band gap in comparison with its pristine. These cases indicate that the presence of defects in semiconductor nanostructures paves the way for the application of such nanostructures in tunable electronics, optical electronics, and spintronics.

Keywords

Main Subjects


[1] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., & Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197-200. https://doi.org/10.1038/ nature04233
[2] Li, M., Du, E.-W., Liang, Y.-Y., Shen, Y.-H., Chen, J., Ju, W., An, Y., & Gong, S.-J. (2021). Electric control of nearly free electron states and ferromagnetism in the transition-metal dichalcogenides monolayers. Journal of Physics: Condensed Matter, 33(20), 205702. https://doi.org/10.1088/1361-648x/abed1c
[3] Nayeri, M., & Fathipour, M. (2018). A Numerical Analysis of Electronic and Optical Properties of the Zigzag MoS<sub>2</sub> Nanoribbon Under Uniaxial Strain. IEEE Transactions on Electron Devices, 65(5), 1988-1994. https://doi.org/10.11 09/TED.2018.2810604
[4] Nayeri, M., Fathipour, M., & Yazdanpanah Goharrizi, A. (2016). Behavior of the dielectric function of monolayer MoS under Uniaxial Strain. Journal of Computational Electronics, 15(4), 1388-1392. https://doi.org/10.1007/s10825-016-0889-z
[5] Tang, L., Xu, R., Tan, J., Luo, Y., Zou, J., Zhang, Z., Zhang, R., Zhao, Y., Lin, J., Zou, X., Liu, B., & Cheng, H.-M. (2021). Modulating Electronic Structure of Monolayer Transition Metal Dichalcogenides by Substitutional Nb-Doping. Advanced Functional Materials, 31(5), 2006941. https://doi.org/10.1002/adfm.202006941
[6] Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S. (2012). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7(11), 699-712. https://doi.org/10.1038/nnano.2012.193
[7] Zheng, S., Zeng, Y., & Chen, Z. (2019). Investigation of Total-Ionizing Dose Effects on the Two-Dimensional Transition Metal Dichalcogenide Field-Effect Transistors. IEEE Access, 7, 79989-79996. https://doi.org/10.1109/ACCESS.2019.2922408
[8] Wang, W., Bai, L., Yang, C., Fan, K., Xie, Y., & Li, M. (2018). The Electronic Properties of O-Doped Pure and Sulfur Vacancy-Defect Monolayer WS2: A First-Principles Study. Materials, 11(2), 1-9. https://doi.org/10.3390/ma11020218
[9] Wei, J.-w., Ma, Z.-w., Zeng, H., Wang, Z.-y., Wei, Q., & Peng, P. (2012). Electronic and optical properties of vacancy-doped WS2 monolayers. AIP Advances, 2(4), 042141-042149. https://doi.org/10.1063/1.4768261
[10] Ma, Y., Dai, Y., Guo, M., Niu, C., Lu, J., & Huang, B. (2011). Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe 2, MoTe 2 and WS 2 monolayers. Physical Chemistry Chemical Physics, 13(34), 15546-15553. https://doi.org/10.1039/C1CP21159E
[11] Zhang, F., Lu, Y., Schulman, D. S., Zhang, T., Fujisawa, K., Lin, Z., Lei, Y., Elias, A. L., Das, S., Sinnott, S. B., & Terrones, M. (2019). Carbon doping of WS<sub>2</sub> monolayers: Bandgap reduction and p-type doping transport. Science Advances, 5(5), 1-8. https://doi.org/10.1126/sciadv.aav5003
[12] Kajino, Y., Oto, K., & Yamada, Y. (2019). Modification of Optical Properties in Monolayer WS2 on Dielectric Substrates by Coulomb Engineering. The Journal of Physical Chemistry C, 123(22), 14097-14102. https://doi.org/10.1021/acs.jpcc.9b04514
[13] Wu, P., Cui, Z., Wang, X., & Ding, Y. (2020). Tunable optical absorption of WS2 monolayer via alkali metal modulation. Modern Physics Letters B, 34(10), 2050089. https://doi.org/10.1142/s021798492050089x
[14] Roy, S., & Bermel, P. (2018). Electronic and optical properties of ultra-thin 2D tungsten disulfide for photovoltaic applications. Solar Energy Materials and Solar Cells, 174(12), 370-379. https://doi.org/10.1016/j.solmat.2017.09.011
[15] Han, D., Sun, H., Ding, W., Chen, Y., Wang, X., & Cheng, L. (2020). Effect of biaxial strain on thermal transport in WS2 monolayer from first principles calculations. Physica E: Low-dimensional Systems and Nanostructures, 124, 114312. https://doi. org/10.1016/j.physe.2020.114312
[16] Nayeri, M., & Taheri, H. (2019, 30 April-02 May). The Influence of Impurity on the Electronic Properties of WS2 Single Layer. 2019 27th Iranian Conference on Electrical Engineering Yazd, Iran.
[17] Hong, S., Sheng, C., Krishnamoorthy, A., Rajak, P., Tiwari, S., Nomura, K.-i., Misawa, M., Shimojo, F., Kalia, R. K., Nakano, A., & Vashishta, P. (2018). Chemical Vapor Deposition Synthesis of MoS2 Layers from the Direct Sulfidation of MoO3 Surfaces Using Reactive Molecular Dynamics Simulations. The Journal of Physical Chemistry C, 122(13), 7494-7503. https://doi.org/10.1021/acs.jpcc.7b12035
[18] Parkin, W. M., Balan, A., Liang, L., Das, P. M., Lamparski, M., Naylor, C. H., Rodríguez-Manzo, J. A., Johnson, A. T. C., Meunier, V., & Drndić, M. (2016). Raman Shifts in Electron-Irradiated Monolayer MoS2. American Chemical Society Nano, 10(4), 4134-4142. https://doi.org/10.1021/acsnano.5b07388
[19] Ma, Q., Isarraraz, M., Wang, C. S., Preciado, E., Klee, V., Bobek, S., Yamaguchi, K., Li, E., Odenthal, P. M., Nguyen, A., Barroso, D., Sun, D., von Son Palacio, G., Gomez, M., Nguyen, A., Le, D., Pawin, G., Mann, J., Heinz, T. F., Rahman, T. S., & Bartels, L. (2014). Postgrowth Tuning of the Bandgap of Single-Layer Molybdenum Disulfide Films by Sulfur/Selenium Exchange. American Chemical Society Nano, 8(5), 4672-4677. https://doi.org/10.1021/nn5004327
[20] Li, H., Tsai, C., Koh, A. L., Cai, L., Contryman, A. W., Fragapane, A. H., Zhao, J., Han, H. S., Manoharan, H. C., Abild-Pedersen, F., Nørskov, J. K., & Zheng, X. (2016). Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nature Materials, 15(1), 48-53. https://doi. org/10.1038/nmat4465
[21] Kresse, G., & Furthmüller, J. (2001). Vienna ab-initio simulation package (VASP).
[22] Zhang, M., Tang, C., Cheng, W., & Fu, L. (2021). The first-principles study on the performance of the graphene/WS2 heterostructure as an anode material of Li-ion battery. Journal of Alloys and Compounds, 855(7179), 157432. https://doi.org/10. 1016/j.jallcom.2020.157432