Photoluminescence and Nonlinear Optical Properties of Copper Doped Zinc Sulfide Thin Film

Document Type : Original Article

Authors

Assistant Professor, Department of Physics, Technical and Vocational University (TVU), Tehran, Iran.

Abstract

In this research, Un-doped zinc sulfide and copper doped thin films in concentrations of 3%, 4% and 7% were deposited on glass substrate by thermal evaporation method, followed by measuring and analyzing linear and non-linear optical properties of the prepared samples using Ultraviolet Visible spectrophotometry (UV-Vis), Photoluminescence (PL) and Z-scan device. The structural properties of the sample and quantitative analysis of data were examined using X-ray diffraction (XRD). Peaks resulted from charts showed that impurities in thin films of zinc sulfide did not led to a new phase in the samples, but relative intensity of peaks increased. Using measured data of the absorption spectrum, the absorption values and the nano-structured band gap of zinc sulfide and doped zinc sulfide with copper were calculated. The photoluminescence illustrated that with increasing concentrations of copper ions, PL intensity decreased. Non-linear optical measurements using continuous wave laser with wavelength of 532 nm for open and closed aperture showed that nonlinear absorption coefficient was positive for the zinc sulfide film and negative for zinc sulfide thin films with copper doped zinc. Furthermore, the refractive index and nonlinear absorption increase with increasing concentration.

Keywords

Main Subjects


[1] Yang, P., Lü, M., Xu, D., Yuan, D., Song, C., Liu, S., & Cheng, X. (2003). Luminescence characteristics of ZnS nanoparticles co-doped with Ni2+ and Mn2+. Optical Materials, 24(3), 497-502. https://doi.org/10.1016/S0925-3467(03)00036-3
[2] Bhargava, R., Gallagher, D., & Welker, T. (1994). Doped nanocrystals of semiconductors-a new class of luminescent materials. Journal of Luminescence, 60, 275-280. https://doi.org/10.1016/0022-2313(94)90146-5
[3] Shin, D. H., Larina, L., Yoon, K. H., & Ahn, B. T. (2010). Fabrication of Cu (In, Ga) Se2 solar cell with ZnS/CdS double layer as an alternative buffer. Current Applied Physics, 10(2), S142-S145. https://doi.org/10.1016/j.cap.2009.11.019
[4] Xu, J., & Ji, W. (1999). Characterization of ZnS nanoparticles prepared by new route. Journal of Material Science Letter, 18(2), 115-117. https://doi.org/10.1023/A:10 06606316840
[5] Yamamoto, T., Kishimoto, S., & Iida, S. (2002). Materials Design for p‐Type ZnS with Blue Ag Emission by Triple‐Codoping Method. Physics Status Solidi B 229(1), 371-375.
[6] Li, C., Shi, G., Xu, H., Guang, S., Yin, R., & Song, Y. (2007). Nonlinear optical properties of the PbS nanorods synthesized via surfactant-assisted hydrolysis. Materials Letters, 61(8-9), 1809-1811. https://doi.org/10.1016/j.matlet.2006.07.137
[7] Wang, C., Guan, L., Mao, Y., Gu, Y., Liu, J., Fu, S., & Xu, Q. (2009). Optical nonlinearity of ZnS–polyvinyl pyrrolidone nanocomposite suspension. Journal of Physics D: Applied Physics, 42(4), 045403. https://iopscience.iop.org/article/10. 1088/0022-3727/42/4/045403
[8] Elidrissi, B., Addou, M., Regragui, M., Bougrine, A., Kachouane, A., & Bernède, J. C. (2001). Structure, Composition and Optical Properties of ZnS Thin Films Prepared by Spray Pyrolysis. Materials Chemistry and Physics, 68(1-3), 175-179. https:// doi.org/10.1016/S0254-0584(00)00351-5
[9] Murali, K., Vasantha, S., & Rajamma, K. (2008). Properties of pulse plated ZnS films. Materials Letters, 62(12-13), 1823-1826. https://doi.org/10.1016/j.matlet.2007.10.012
[10] Shao, L.-X., Chang, K.-H., & Hwang, H.-L. (2003). Zinc sulfide thin films deposited by RF reactive sputtering for photovoltaic applications. Applied Surface Science, 212-213, 305-310. https://doi.org/10.1016/S0169-4332(03)00085-0
[11] Tang, W., & Cameron, D. (1996). Electroluminescent zinc sulphide devices produced by sol-gel processing. Thin Solid Films, 280(1-2), 221-226. https://doi.org/10.10 16/0040-6090(95)08198-4
[12] Liang, C., Shimizu, Y., Sasaki, T., Umehara, H., & Koshizaki, N. (2004). Au-mediated growth of wurtzite ZnS nanobelts, nanosheets, and nanorods via thermal evaporation. The Journal of Physical Chemistry B, 108(28), 9728-9733. https:// doi.org/10.1021/jp037963f
[13] Naskar, M. K., Patra, A., & Chatterjee, M. (2006). Understanding the role of surfactants on the preparation of ZnS nanocrystals. Journal of Colloid and Interface science, 297(1), 271-275. https://doi.org/10.1016/j.jcis.2005.10.057
[14] Kim, C. E., Moon, P., Kim, S., Myoung, J.-M., Jang, H. W., Bang, J., & Yun, I. (2010). Effect of carrier concentration on optical bandgap shift in ZnO: Ga thin films. Thin Solid Films, 518(22), 6304-6307. https://doi.org/10.1016/j.tsf.2010.03.042
[15] Bacaksiz, E., Görür, O., Tomakin, M., Yanmaz, E., & Altunbaş, M. (2007). Ag diffusion in ZnS thin films prepared by spray pyrolysis. Materials Letters, 61(30), 5239-5242. https://doi.org/10.1016/j.matlet.2007.04.038
[16] Anand, K. (2015). Optical and photoluminescence properties of HMTA capped transition metals (Cu, Co and MN) doped ZnS nanoparticles. Journal of Chemical and Pharmaceutical Research, 7(2), 286-290. https://www.jocpr.com/articles/ optical-and-photoluminescence-properties-of-hmta-capped-transition-metalscu-co-and-mn-doped-zns-nanoparticles.pdf
[17] Karar, N., Singh, F., & Mehta, B. (2004). Structure and photoluminescence studies on ZnS: Mn nanoparticles. Journal of Applied Physics, 95(2), 656-660. https://doi. org/10.1063/1.1633347
[18] Peng, W. Q., Cong, G. W., Qu, S. C., & Wang, Z. G. (2006). Synthesis and photoluminescence of ZnS:Cu nanoparticles. Optical Materials, 29(2), 313-317. https://doi.org/10.1016/j.optmat.2005.10.003
[19] Sheik-Bahae, M., Said, A. A., Wei, T.-H., Hagan, D. J., & Van Stryland, E. W. (1990). Sensitive measurement of optical nonlinearities using a single beam. IEEE journal of quantum electronics, 26(4), 760-769. https://doi.org/10.1109/3.53394
[20] Ghosh, B., Chakraborty, P., Mohapatra, S., Kurian, P. A., Vijayan, C., Deshmukh, P., & Mazzoldi, P. (2007). Linear and nonlinear optical absorption in copper nanocluster-glass composites. Materials Letters, 61(23-24), 4512-4515. https://doi. org/10.1016/j.matlet.2007.02.065
[21] Boyd, R. (2008, March 28). Nonlinear Optics (Third ed.). Elsevier. https://www. elsevier.com/books/nonlinear-optics/boyd/978-0-12-369470-6
[22] Franz, R., & Wiedemann, G. (1853). Ueber die Wärme‐Leitungsfähigkeit der Metalle. Annalen der Physik, 165(8), 497-531. https://doi.org/10.1002/andp.18531650802
[23] Suhail, M. H., & Ahmed, R. A. (2014). Structural, optical and electrical properties of doped copper ZnS thin films prepared by chemical spray pyrolysis technique. Advances in Applied Science Research, 5(5), 139-147. https://www.semanticscholar .org/paper/Structural,-optical-and-electrical-properties-of-by-Suhail-Ahmed/2c7a67 5cdd2439c5ab15b6d1507705ed650c4a98
Volume 18, Special Issue 1 - Serial Number 54
Art and Architecture/ Basic Sciences
September 2021
Pages 189-203
  • Receive Date: 01 September 2020
  • Revise Date: 07 October 2020
  • Accept Date: 23 January 2021