Entanglement control via coherent population trapping in the closed –loop quantum systems

Document Type : Original Article

Authors

1 Assistant professor, Department of Physics, Khorram Abad Branch, Islamic Azad University, Khoram Abad, Iran.

2 Ph.D., Young Researchers and Elite Club, Khorram Abad Branch, Islamic Azad University, Khorram Abad, Iran.

Abstract

In this research, the disentanglement conditions between the coated atom and its spontaneous emission in double- lambda quantum system was investigated. Initially, the entanglement increased due to the interaction between the laser fields and the four- level atom. This entanglement can be controlled by changing the intensity of the applied fields. By applying the two coupling fields, the system is entangled and the system would be disentangled with one coupling field and one probe field. The present research demonstrated that spontaneous emission by changing the population of atoms in the alignments is a good source of entanglement, but fields were manipulated in such a way that this entanglement was reduced by coherent trapping of the population for the atoms.

Keywords

Main Subjects


[1] Feynman, R. P. (1982). Simulating physics with computers. International Journal of Theoretical Physics, 21(6), 467-488. https://doi.org/10.1007/BF02650179
[2] Mortezapour, A., Ahmadi Borji, M., & Lo Franco, R. (2017). Protecting entanglement by adjusting the velocities of moving qubits inside non-Markovian environments. Laser Physics Letters, 14(5), 055201. https://doi.org/10.1088/1612-202X/aa63c5
[3] Einstein, A., Podolsky, B., & Rosen, N. (2017). Can quantum-mechanical description of physical reality be considered complete? Physical review, 47(10), 777. https://doi.org/10.1103/PhysRev.47.777
[4] Schrödinger, E. (2017). Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften, 23(49), 823-828. https://doi.org/10.1007/BF01491891
[5] Bennett, C. H., DiVincenzo, D. P., Smolin, J. A., & Wootters, W. K. (1996). Mixed-state entanglement and quantum error correction. Physical Review A, 54(5), 3824. https://doi.org/10.1103/PhysRevA.54.3824
[6] Bennett, C. H., & Wiesner, S. J. (1992). Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Physical Review Letters, 69(20), 2881. https://doi.org/10.1103/PhysRevLett.69.2881
[7] Zukowski, M., Zeilinger, A., Horne, M. A., & Ekert, A. K. (1993). " Event-ready-detectors" Bell experiment via entanglement swapping. Physical Review Letters, 71(26), 4287-4290. https://doi.org/10.1103/PhysRevLett.71.4287
[8] Lanyon, B. P., Weinhold, T. J., Langford, N. K., Barbieri, M., James, D. F., Gilchrist, A., & White, A. G. (2007). Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement. Physical Review Letters, 99(25), 250505. https://doi.org/10.1103/PhysRevLett.99.250505
[9] Sergienko, A., Pascazio, S., & Villoresi, P. (2010). Quantum Communication and Quantum Networking: First International Conference, QuantumComm 2009, Naples, Italy, October 26-30, 2009, Revised Selected Papers. Springer https://books.google.com/books?id=V4JqCQAAQBAJ
[10] Kordi, Z., Ghanbari, S., & Mahmoudi, M. (2015). Maximal Atom-Photon Entanglement in a Double-Lambda Quantum System. Quantum Information Processing, 14(6), 1907-1918. https://arxiv.org/abs/1407.4090v2
[11] Kordi, Z., Ghanbari, S., & Mahmoudi, M. (2016). Atom–photon entanglement beyond the multi-photon resonance condition. Quantum Information Processing, 15(1), 199-213. https://doi.org/10.1007/s11128-015-1168-9
[12] Mortezapour, A., Kordi, Z., & Mahmoudi, M. (2013). Phase-Controlled Atom-Photon Entanglement in a Three-Level lambda-Type Closed-Loop Atomic System. Chinese Physics B, 22(6), 060310. https://arxiv.org/abs/1209.6246
[13] Scully, M. O., & Zubairy, M. S. (1997). Quantum Optics. Cambridge University Press. https://books.google.com/books?id=9lkgAwAAQBAJ
[14] Vedral, V., Plenio, M. B., Rippin, M. A., & Knight, P. L. (1997). Quantifying Entanglement. Phys.Rev.Lett, 78, 2275-2279. https://doi.org/10.1103/PhysRevLett .78.2275
[15] Audenaert, K., Verstraete, F., & De Moor, B. (2001). Variational characterizations of separability and entanglement of formation. Phys. Rev. A, 64(5). https://doi.org/10. 1103/PhysRevA.64.052304
[16] Vedral, V., & Plenio, M. B. (1998). Entanglement measures and purification procedures. Physical Review A, 57(3), 1619-1633. https://doi.org/10.1103/Phys RevA.57.1619
[17] Phoenix, S. J. D., & Knight, P. L. (1988). Fluctuations and entropy in models of quantum optical resonance. Annals of Physics, 186(2), 381-407. https://doi.org/10. 1016/0003-4916(88)90006-1
[18] Phoenix, S. J., & Knight, P. (1991). Establishment of an entangled atom-field state in the Jaynes-Cummings model. Physical Review A, 44(9), 6023. https://doi.org/10. 1103/PhysRevA.44.6023
[19] Phoenix, S. J., & Knight, P. (1991). Comment on ‘‘Collapse and revival of the state vector in the Jaynes-Cummings model: An example of state preparation by a quantum apparatus’’. Physical Review Letters, 66(21), 2833. https://doi.org/10. 1103/PhysRevLett.66.2833
[20] Pooser, R. C., Marino, A. M., Boyer, V., Jones, K. M., & Lett, P. D. (2009). Quantum correlated light beams from non-degenerate four-wave mixing in an atomic vapor: the D1 and D2 lines of 85 Rb and 87 Rb. Optics express, 17(19), 16722-16730. https://doi.org/10.1364/OE.17.016722
[21] Cheng, J., Han, Y., & Zhou, L. (2012). Pure-state entanglement and spontaneous emission quenching in a v-type atom–cavity system. Journal of Physics B: Atomic, Molecular and Optical Physics, 45(1), 015505. https://doi.org/10.1088/0953-4075/45/1/015505
[22] Xiong, H., Scully, M. O., & Zubairy, M. S. (2005). Correlated spontaneous emission laser as an entanglement amplifier. Physical Review Letters, 94 (2), 023601. https://doi.org/10.1103/PHYSREVLETT.94.023601
Volume 18, Special Issue 1 - Serial Number 54
Art and Architecture/ Basic Sciences
September 2021
Pages 179-188
  • Receive Date: 27 April 2020
  • Revise Date: 28 December 2020
  • Accept Date: 16 January 2021