The Effect of Geo-Grid Plates on Vertical Displacement and Shearing Force on Foundation Using Finite Element Method and Two-Dimensional PLAXIS Software

Document Type : Original Article

Authors

1 PhD Student, Department of Civil Engineering, Faculty of Engineering, Shahid Bahonar University, Kerman, Iran.

2 Professor, Department of Civil Engineering, Faculty of Engineering, Shahid Bahonar University, Kerman, Iran.

Abstract

Geo-synthetics are made from polymers used to stabilize and improve soil behaviors. Nowadays, geo-grids are widely used in geotechnical engineering applications. In the present study, a surface foundation located on three different soil layers under a uniform load was modeled and analyzed using finite element method under specified acceleration. The intermediate soil profile consisted of loose clay reinforced using two types of geo-grids with different distances. The results showed that by increasing vertical distance between the geo-grid layers, the vertical displacement, axial force, shear force and flexural anchor applied to the foundation also increased. Furthermore, in the case of geo-grid layer positioned at a depth of 5m or more, the shear force and flexural moment increased with a steeper slope in comparison with other cases.

Keywords

Main Subjects


[1] Rajabi, A. M., & H‌e‌i‌d‌a‌r‌i A‌b‌d‌o‌l‌l‌a‌h‌i, A. (2019). T‌h‌e e‌x‌p‌e‌r‌i‌m‌e‌n‌t‌a‌l s‌t‌u‌d‌y o‌f t‌h‌e n‌a‌n‌o-s‌i‌l‌i‌c‌a e‌f‌f‌e‌c‌t o‌n t‌h‌e s‌t‌r‌e‌n‌g‌t‌h a‌n‌d c‌o‌n‌s‌o‌l‌i‌d‌a‌t‌i‌o‌n p‌a‌r‌a‌m‌e‌t‌e‌r‌s o‌f k‌a‌r‌a‌j c‌l‌a‌y s‌o‌i‌l‌s. Sharif Journal of Civil Engineering, 35.2(2.1), 65-72. https://doi.org/10.24200/j30.2018.2007.2061
[2] Kumar, S., Sahu, A. K., & Naval, S. (2019). Performance of circular footing on expansive soil bed reinforced with geocells of Chevron pattern. Civil Engineering Journal, 5(11), 2333-2348. https://doi.org/10.28991/cej-2019-03091415
[3] Sridhar, R., & Prathapkumar, M. T. (2017). Behaviour of model footing resting on sand reinforced with number of layers of coir geotextile. Innovative Infrastructure Solutions, 2(1), 1-8. https://doi.org/10.1007/s41062-017-0099-y
[4] Huang, Y., Sawada, K., Moriguchi, S., Yashima, A., & Zhang, F. (2006). Numerical assessment of the effect of reinforcement on the performance of reinforced soil dikes. Geotextiles and Geomembranes, 24(3), 169-174. https://doi.org/10.1016/j.geotexmem.2005.11.005
[5] Patra, C. R., Das, B. M., Bhoi, M., & Shin, E. C. (2006). Eccentrically loaded strip foundation on geogrid-reinforced sand. Geotextiles and Geomembranes, 24(4), 254-259. https://doi. org/10.1016/j.geotexmem.2005.12.001
[6] Kolay, P., Kumar, S., & Tiwari, D. (2013). Improvement of bearing capacity of shallow foundation on geogrid reinforced silty clay and sand. Journal of Construction Engineering, 2013, 1-10. https://doi.org/10.1155/2013/293809
[7] Duncan-Williams, E., & Attoh-Okine, N. O. (2008). Effect of geogrid in granular base strength – An experimental investigation. Construction and Building Materials, 22(11), 2180-2184. https://doi.org/10.1016/j.conbuildmat.2007.08.008
[8] Abdi, M., Sadrnezhad, S., & Arjmand, M. (2009). Clay reinforcement using geogrid embedded in thin layers of sand. International Journal of Civil Engineering 7(4), 224-235. http://ijce.i ust.ac.ir/article-1-380-en.html
[9] Bathurst, R. J., & Miyata, Y. (2015). Reliability-based analysis of combined installation damage and creep for the tensile rupture limit state of geogrid reinforcement in Japan. Soils and Foundations, 55(2), 437-446. https://doi.org/10.1016/j.sandf.2015. 02.017
[10] Abu-Farsakh, M., Coronel, J., & Tao, M. (2007). Effect of Soil Moisture Content and Dry Density on Cohesive Soil–Geosynthetic Interactions Using Large Direct Shear Tests. Journal of materials in civil engineering, 19(7), 540-549. https://doi.org/10.1 061/(ASCE)0899-1561(2007)19:7(540)
[11] Siavoshnia, M., Kalantari, F., & Shakiba, A. (2010, April 26-28). Assessment of geotextile reinforced embankment on soft clay soil. The 1st International Applied Geological Congress, Department of Geology, Islamic Azad University - Mashad Branch, Iran. http s://ctb.iau.ir/faculty/m-siavoshnia-civil/fa/articlesInConferences/324
[12] Karim, H. H., Samueel, Z. W., & Jassem, A. H. (2020). Behaviour of soft clayey soil improved by fly ash and geogrid under cyclic loading. Civil Engineering Journal, 6(2), 225-237. https://www.researchgate.net/publication/338994040_Behaviour_of _Soft_Clayey_Soil_Improved_by_Fly_Ash_and_Geogrid_under_Cyclic_Loading
[13] Abd El Raouf, M. E. (2020). Stability of Geogrid Reinforced Embankment on Soft Clay. JES. Journal of Engineering Sciences, 48(5), 830-844. https://doi.org/10.21608/jesa un.2020.112941
[14] El Sawwaf, M., & Nazir, A. K. (2010). Behavior of repeatedly loaded rectangular footings resting on reinforced sand. Alexandria Engineering Journal, 49(4), 349-356. https://doi. org/10.1016/j.aej.2010.07.002
[15] Ghosh, A., Ghosh, A., & Bera, A. K. (2005). Bearing capacity of square footing on pond ash reinforced with jute-geotextile. Geotextiles and Geomembranes, 23(2), 144-173. htt ps://doi.org/10.1016/j.geotexmem.2004.07.002
[16] Sharma, R., Chen, Q., Abu-Farsakh, M., & Yoon, S. (2009). Analytical modeling of geogrid reinforced soil foundation. Geotextiles and Geomembranes, 27(1), 63-72. https://doi.org/10.1016/j.geotexmem.2008.07.002
[17] Brinkgreve, R. B. J., Broern, W., & Waterman, D. (2006). Reference Manual for PLAXIS 2D version 8.0. B. PLAXIS. https://www.civil.iitb.ac.in/~ajuneja/Plaxis%20progra m/Version%208%20Introductory/Manuals/English/V84-1_GenInfo.pdf
[18] Das, B. M., & Sobhan, K. (2012). Principles of Geotechnical Engineering (8 ed.). Cengage learning. http://faculty.tafreshu.ac.ir/file/download/course/1583609876-principles-of-g eotechnical-engineering-8th-das.pdf
[19] Cicek, E., Guler, E., & Yetimoglu, T. (2015). Effect of reinforcement length for different geosynthetic reinforcements on strip footing on sand soil. Soils and Foundations, 55(4), 661-677. https://doi.org/10.1016/j.sandf.2015.06.001
[20] Huesker. (2017). Basetrac® Duo-C PP 30 B15. Huesker Synthetic GmbH. https://www. huesker.co.uk/fileadmin/media/Tender_Specifications/English/Basetrac_Duo-C_P P_30_B15.pdf
[21] Huesker. (2017). Basetrac® Duo-C PET 30 B15. Huesker Synthetic GmbH. https://ww w.huesker.co.uk/fileadmin/media/Tender_Specifications/English/Basetrac_Duo-C_PET_30_B15.pdf
[22] Huesker. (2017). Basetrac® Duo PET 30 B15. Huesker Synthetic GmbH. https://www.h uesker.co.uk/fileadmin/media/Tender_Specifications/English/Basetrac_Duo_PET_30_B15.pdf
[23] Jain, S. K., Nusari, M. S., & Acharya, I. P. (2020). WITHDRAWN: Use of geo-grid reinforcement and stone column for strengthening of mat foundation base. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.10.757