بررسی تأثیر هایپرترمیای مغناطیسی نانوذرات فریت کبالت

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسنده

استادیار، دپارتمان علوم پایه، دانشکده فنی و حرفه ای شهید رجا یی کاشان، دانشگاه فنی و حرفه ای استان اصفهان ، ایران.

چکیده

تأثیر هایپرترمیای مغناطیسی حاصل از حل شدن نانوذرات فریت کبالت در آب‌مقطر بررسی شد. ساخت نانوذرات فریت کبالت (CoFe2O4) با روش هم‌رسوبی در دمای 80 درجه سلسیوس، با پیش‌ماده ‌شامل نمک‌های آهن و کبالت و در حضور اتمسفر هوا انجام شد. در این ساخت، از ستیل‌تری‌متیل‌آمونیوم‌برومید ((CTAB به‌عنوان سورفکتانت استفاده شد. ساختار نانوذرات از لحاظ اندازه، ریخت‌شناسی و نیز ساختار و ویژگی‌های مغناطیسی‌شان، به‌ترتیب توسط مشخصه‌یاب‌های پراش اشعه ایکس (XRD) میکروسکوپ الکترونی روبشی انتشار میدانی (FESEM) و دستگاه مغناطیس‌سنج نمونه ارتعاشی (VSM) مطالعه شدند. اندازه‌گیری هایپرترمیای مغناطیسی نمونه‌، پس از تهیه فروفلوئید با غلظت 3mg/ml در محیط آب‌مقطر و در میدان مغناطیسی ac با فرکانس 400 کیلوهرتز و شدت میدان 400 اورستد انجام شد. افزایش دمای نمونه‌ در بازه‌های زمانی موردنظر مشخص و توان اتلاف ویژه حرارتی (SLP) آن اندازه‌گیری شد. طبق نتایج حاصل از اندازه‌گیری، SLP نمونه برابر W/g 151 به‌دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Magnetic Hyperthermia Investigation Of Cobalt Ferrite Nanoparticles

نویسنده [English]

  • Ahmad Reza Yasemian
Assistant Professor, Department of Basic Sciences, Faculty of Shahid Rajaee, Kashan Branch, Technical and Vocational University (TVU), Isfahan, Iran.
چکیده [English]

The effect of magnetic hyperthermia on dissolution of cobalt ferrite nanoparticles in distilled water was investigated. Synthesis of cobalt ferrite nanoparticles (CoFe2O4) was performed by Co-precipitation method at 80 ° C, with precursor including iron and cobalt salts in the presence of air atmosphere. CTAB was used as a surfactant in this synthesis. The particle structure and morphology as well as the structure and magnetic properties of these nanoparticles were studied by X-ray diffraction (XRD) field emission scanning electron microscopy (FESEM) and vibrational sample magnetometer (VSM), respectively. Sample magnetic hyperthermia was measured after preparation of ferrofluid with a concentration of 3 mg/ml in distilled water and in an ac magnetic field with a frequency of 400 kHz and a field intensity of 400 Oe. The increase in sample temperature over time was determined and its specific heat dissipation power (SLP) was measured. According to the measurement results, the sample SLP was 151 W/g.

کلیدواژه‌ها [English]

  • Cobalt ferrite
  • Co-precipitation
  • Magnetic properties
  • Specific Loss Power
References
[1] Beik, J., Abed, Z., Ghoreishi, F. S., Hosseini-Nami, S., Mehrzadi, S., Shakeri-Zadeh, A., & Kamrava, S. K. (2016). Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. Journal of Controlled Release, 235, 205-221. https://doi.org/10.1016/j.jconrel.2016.05.062
[2] Rosensweig, R. E. (2002). Heating magnetic fluid with alternating magnetic field. Journal of Magnetism and Magnetic Materials, 252, 370-374. https://doi.org/10.1016/S030 4-8853(02)00706-0
[3] Jordan, A., Scholz, R., Wust, P., Fähling, H., & Roland, F. (1999). Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 201(1), 413-419. https://doi.org/10.1016/S0304-8853(99)00088-8
[4] Overgaard, J. (1985). Hyperthermic Oncology, 1984: Review lectures, symposium summaries and workshop summaries. Taylor & Francis. https://books.google.com/ books?id=r6RrAAAAMAAJ
[5] Gordon, R. T., Hines, J. R., & Gordon, D. (1979). Intracellular hyperthermia a biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Medical Hypotheses, 5(1), 83-102. https://doi.org/10.1016/0306-9877 (79)90063-X
[6] Medal, R., Shorey, W., Gilchrist, R., Barker, W., & Hanselman, R. (1959). Controlled radio-frequency generator for production of localized heat in intact animal: Mechanism and construction. AMA Archives of Surgery, 79(3), 427-431.
[7] Nemati, Z., Alonso Masa, J., Rodrigo Arrizabalaga, I., Das, R., Garaio, E., Garcia, J., Orue, I., Phan, M.-H., & Srikanth, H. (2018). Improving the Heating Efficiency of Iron Oxide Nanoparticles by Tuning Their Shape and Size. The Journal of Physical Chemistry C, 122(4), 2367-2381. https://doi.org/10.1021/acs.jpcc.7b10528
[8] Périgo, E., Hemery, G., Sandre, O., Ortega, D., Garaio, E., Plazaola, F., & Teran, F. (2015). Fundamentals and advances in magnetic hyperthermia. Applied Physics Reviews, 2(4), 041302. https://doi.org/10.1063/1.4935688
[9] Pradhan, P., Giri, J., Rieken, F., Koch, C., Mykhaylyk, O., Döblinger, M., Banerjee, R., Bahadur, D., & Plank, C. (2010). Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. Journal of Controlled Release, 142(1), 108-121. https://doi.org/10.1016/j.jconrel.2009.10.002
[10] Yasemian, A. R., Almasi Kashi, M., & Ramazani, A. (2019). Surfactant-free synthesis and magnetic hyperthermia investigation of iron oxide (Fe3O4) nanoparticles at different reaction temperatures. Materials Chemistry and Physics, 230, 9-16. https://doi.org/10.1016/j.matchemphys.2019.03.032
[11] Cullity, B. D., & Graham, C. D. (2011). Introduction to Magnetic Materials. Wiley. https://books.google.com/books?id=fh_F0G9KuSgC
[12] Hedayatnasab, Z., Abnisa, F., & Daud, W. M. A. W. (2017). Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Materials & Design, 123, 174-196. https://doi.org/10.1016/j.matdes.2017.03.036
[13] Jagoo, M. Z. (2012, March). Radio-Frequency Heating of Magnetic Nanoparticles [MSc Thesis, School of Graduate Studies, Department of Physics, Wright State University]. Dayton, United States. https://corescholar.libraries.wright.edu/cgi/ viewcontent.cgi?article=1695&context=etd_all
[14] Lu, A. H., Salabas, E. L., & Schüth, F. (2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 46(8), 1222-1244. https://doi.org/10.1002/anie.200602866
[15] Reitz, J. R., Milford, F. J., & Christy, R. W. (2009). Foundations of Electromagnetic Theory. Pearson/Addison-Wesley. https://books.google.com/books?id=vNVDPgAACAAJ
[16] Carrey, J., Mehdaoui, B., & Respaud, M. (2011). Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. Journal of Applied Physics, 109, 083921. https://doi. org/10.1063/1.3551582
[17] Hergt, R., Dutz, S., Müller, R., & Zeisberger, M. (2006). Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. Journal of Physics: Condensed Matter, 18(38), S2919-S2934. https://doi. org/10.1088/0953-8984/18/38/s26
[18] Lukawska, A. B. (2014). Thermal Properties of Magnetic Nanoparticles in External ac Magnetic Field [MSc Thesis, Graduate School, Department of Physics, Wright State University]. Dayton, United States. https://corescholar.libraries.wright.edu/cgi/ viewcontent.cgi?article=2342&context=etd_all
[19] Mehdaoui, B., Meffre, A., Carrey, J., Lachaize, S., Lacroix, L. M., Gougeon, M., Chaudret, B., & Respaud, M. (2011). Optimal size of nanoparticles for magnetic hyperthermia: a combined theoretical and experimental study. Advanced Functional Materials, 21(23), 4573-4581. https://doi.org/10.1002/adfm.201101243
[20] Obaidat, I., Issa, B., & Haik, Y. (2015). Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia. Nanomaterials, 5(1), 63-89. https://doi.org/10.3390/nano5010063
[21] Thanh, N. T. K. (2018). Clinical Applications of Magnetic Nanoparticles: From Fabrication to Clinical Applications. CRC Press. https://books.google.com/books? id=p8JKDwAAQBAJ
[22] Shahjuee, T., Masoudpanah, S. M., & Mirkazemi, S. M. (2017). Coprecipitation Synthesis of CoFe2O4 Nanoparticles for Hyperthermia. Journal of Ultrafine Grained and Nanostructured Materials, 50(2), 105-110. https://doi.org/10.22059/ jufgnsm.2017.02.04