بررسی اثر مقدار روان‌ساز و بازپخت پودرها بر ویژگی‌های مغناطیسی هسته‌های پودری مغناطیسی سنداست

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسنده

استادیار، دپارتمان مهندسی برق و کامپیوتر، دانشکده شهید مهاجر، دانشگاه فنی و حرفه ای استان اصفهان، ایران.

چکیده

در این پژوهش، آلیاژ سنداست (Fe85Si9.6Al5.4) به روش آلیاژسازی مکانیکی ساخته شد. آلیاژ به‌دست‌آمده در فضای آرگون و دمای Cͦ 1100 به مدت 2 ساعت بازپخت شد. فازیابی و بررسی ریخت پودرهای آسیاب‌شده و بازپخت‌شده به‌ترتیب با پراش‌سنج پرتوایکس و میکروسکوپ الکترونی روبشی انجام شد. نتایج نشان داد که محلول جامد نانو ساختار سنداست پس از h10 آسیاب‌کاری به‌دست ‌آمده است و پس از بازپخت، دانه‌ها رشدکرده‌اند. آلیاژ به‌دست‌آمده، با چسب سیلیکات سدیم، عایق‌بندی و سپس با درصدهای گوناگون استئارات روی از 25/0 تا 75/0 درصد وزنی مخلوط شد. برای به دست آوردن هسته‌های مغناطیسی پودری این کامپوزیت‌ها به روش متالورژی پودر در فشار MPa  1600شکل داده شدند. بخش‌های حقیقی و انگاری تراوایی مؤثر و سازه‌ی کیفیت هسته‌ها با یک LCR سنج اندازه‌گیری شد. نتایج نشان داد که چگالی خام هسته‌ با 5/0 درصد استئارات روی از 25/0 درصد بیشتر است و پس‌ازآن ثابت می‌ماند. هم‌چنین ویژگی‌های مغناطیسی هسته با 5/ درصد استئارات بهینه شد. مقایسه‌ی بخش حقیقی تراوایی مؤثر برای هسته با آلیاژ بازپخت نشده و شده نشان داد که بازپخت پودرها به افزایش تراوایی مؤثر می‌انجامد و تا بسامدهای کمتر از 200 کیلوهرتز سازه‌ی کیفیت را هم افزایش می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation the effect of lubricant amount and annealing of powders on the magnetic properties of Sendust magnetic powder cores

نویسنده [English]

  • Maryam Amoohadi
Assistant Professor, Department of Electrical and Computer Engineering, Faculty of Mohajer, Isfahan Branch, Technical and Vocational University (TVU), Isfahan, Iran.
چکیده [English]

In this study, Sendust alloy (Fe85Si9.6Al5.4) was fabricated by the mechanical alloy method. The obtained alloy was annealed for 2h at 1100 ͦC in the Ar atmosphere. Phase identification and morphology analysis of the milled and annealed powders were performed by X-ray diffractometer and scanning electron microscope, respectively. The results showed that the Sendust nanostructure solid solution obtained after 10h milling and after annealing the grains grew. The resulting alloy was insulated with sodium silicate adhesive and then mixed with various percentages of Zn- stearates from 0.25 to 0.75wt. %. These composites were formed by PM-method at 1600 MPa to obtain magnetic powder cores. The real and imaginary part of effective permeability and quality factor of the cores were measured with an LCR-meter. In addition, the results indicated that the green density of the core with 0.5% Zn-Stearate was higher than that of 0.25% Zn-Stearate and then remained constant. The magnetic properties of the sample were also optimized with 0.5% stearate. A comparison of the real part of permeability for the core with the unannealed and annealed powders showed that annealing of the powders resulted in an increase in the permeability and increased the Q-factor to frequencies below 200 kHz.

کلیدواژه‌ها [English]

  • Sendust
  • Mechanical alloying
  • Effective permeability
  • Lubricant
  • Annealing
References
[1] Cullity, B. D., & Graham, C. D. (2011). Introduction to Magnetic Materials. Wiley. https://books.google.com/books?id=fh_F0G9KuSgC
[2] Goldman, A. (2012). Handbook of Modern Ferromagnetic Materials. Springer US. https://books.google.com/books?id=StbgBwAAQBAJ
[3] Fiorillo, F., & Mayergoyz, I. D. (2005). Characterization and Measurement of Magnetic Materials. ACADEMIC PressINC. https://books.google.com/books?id=1dwXog EACAAJ
[4] Liu, Y., Yi, Y., Shao, W., & Shao, Y. (2013). Microstructure and magnetic properties of soft magnetic powder cores of amorphous and nanocrystalline alloys. Journal of Magnetism and Magnetic Materials, 330, 119-133. https://doi.org/10.1016/j.jmmm .2012.10.043
[5] Rutz, H., Hanejko, F., & Ellis, G. (1997). The manufacture of electromagnetic components by the powder metallurgy process. Advances in Powder Metallurgy and Particulate Materials, 1, 1-10.
[6] Chao, A. W., & Tigner, M. (1999). Handbook of Accelerator Physics and Engineering. World Scientific. https://books.google.com/books?id=XOA1moE0u2wC
[7] Yasemian, A. R. (2018). Synthesis of Iron Oxide Nanoparticles and Evaluation of the Effect of Concentration on Magnetic Hyperthermia. Karafan Quarterly Scientific Journal, 15(44), 127-136. https://karafan.tvu.ac.ir/article_100528.html?lang=en
[8] Faal Hamedani, N., & Shemshadi, R. (2018). Ultrasound –assisted Green Synthesis of ZnO Nanoparticles with Various Morphologies. Karafan Quarterly Scientific Journal, 15(44), 37-48. https://karafan.tvu.ac.ir/article_100521.html?lang=en
[9] Iyoda, Y., Kamiya, N., Arita, I., & Maruyama, K. (2004). Soft magnetic green compact, manufacturing method for soft magnetic green compact, and soft magnetic powder material. 1-10.
[10] Magnetic-Inc. (2013). Magnetics 2013 Ferrite Catalog. Magnetic-Inc. https://www.mag-inc.com/Media/Magnetics/File-Library/Product%20Literature/Ferrite%20Literature/ Magnetics2013FerriteCatalog.pdf
[11] Wohlfarth, E. P., Buschow, K. H. J., & Brück, E. (1980). Ferromagnetic Materials: A Handbook on the Properties of Magnetically Ordered Substances. North-Holland Publishing Company. https://books.google.com/books?id=Od_vAAAAMAAJ
[12] Amoohadi, M., Mozaffari, M., Gharaati, A., & Rezazadeh, M. (2018). Structural and Magnetic Properties of Ordered/Disordered Sendust Powders Prepared by Mechanical Alloying. Journal of Superconductivity and Novel Magnetism, 31(8), 2547–2552. https://doi.org/10.1007/s10948-017-4473-y
[13] Gegel, G. A., & Luk, S. (2002). Test Device and Method for Evaluation of Lubricants for P/M Compaction. Advances in Powder Metallurgy and Particulate Materials(3), 3-12.
[14] Rutz, H., Khanuja, J., & Kassam, S. (1996). Single compaction to achieve high density in ferrous P/M materials in automotive applications. Metal Powder Industries Federation (USA), 13. https://www.gknpm.com/globalassets/downloads/hoeganae s/technical-library/technical-papers/test-papers/43.-single-compaction-to-achieve-hig h-density-in-ferrous-pm-materials-in-automotive-applications.pdf/
[15] Zuo, B., Sritharan, T., Teo, Y., & Damayanti, M. (2005). Effects of ternary alloying on mechano-synthesis and nano-crystal stability of an iron-silicon alloy. Journal of Alloys and Compounds, 390(1), 82-87. https://doi.org/10.1016/j.jallcom.2004.08.029
[16] Amoohadi, M., Mozaffari, M., Gharaati, A., & Rezazadeh, M. (2018). A Comparative Study of Insulators on Magnetic Properties of Sendust Based Nanocomposite Powder Cores. Journal of Optoelectronical Nanostructures, 3(4), 1-14. http://jopn. miau.ac.ir/article_3249.html
[17] Snelling, E. C., & Giles, A. D. (1983). Ferrites for Inductors and Transformers. Research Studies Press. https://books.google.com/books?id=24CzAAAAIAAJ
[18] Lutterotti, L. (2010). Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(3), 334-340. https://doi.org/10.1016/j.nimb.2009.09.053
[19] James, W. B. (2015). Powder metallurgy methods and applications. In ASM Handbook (Vol. 7, pp. 9-19). https://doi.org/10.31399/asm.hb.v07.a0006022
[20] Pittini-Yamada, Y., Périgo, E. A., de Hazan, Y., & Nakahara, S. (2011). Permeability of hybrid soft magnetic composites. Acta Materialia, 59(11), 4291-4302. https://doi. org/10.1016/j.actamat.2011.03.053
[21] Shokrollahi, H., & Janghorban, K. (2006). The effect of compaction parameters and particle size on magnetic properties of iron-based alloys used in soft magnetic composites. Materials Science and Engineering: B, 134(1), 41-43. https://doi.org/ 10.1016/j.mseb.2006.07.015
[22] Snelling, E. C. (1988). Soft Ferrites: Properties and Applications. Butterworths. https://books.google.com/books?id=yRNTAAAAMAAJ
[23] Shokrollahi, H., & Janghorban, K. (2007). Soft magnetic composite materials (SMCs). Journal of Materials Processing Technology, 189(1), 1-12. https://doi.org/10.1016/ j.jmatprotec.2007.02.034