ارائه طرح اختلاط پیشنهادی بتن بازیافتی مورد استفاده در جداول بتنی شهری با استفاده از شبکه عصبی

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 دکتری، دپارتمان مهندسی عمران، دانشکده امام محمد باقر(ع)، دانشگاه فنی و حرفه ای استان مازندران، ایران.

2 دانشجوی کارشناسی، دانشکده شهید منتظری مشهد، دانشگا ه فنی و حرفه ای استان خراسان رضوی، ایران.

3 کارشناسی ارشد، دپارتمان مهندسی عمران، دانشکده امام محمد باقر(ع)، دانشگاه فنی و حرفه ای استان مازندران، ایران.

چکیده

رشد روزافزون ساخت و استفاده از جداول بتنی در معابر و راه‌های شهری و بین شهری موجب شد تا ایده استفاده از بتن بازیافتی در جداول بتنی شهری پیشنهاد گردد. بنابراین، در این پژوهش تلاش شده است تا پارامترهای مکانیکی و اقتصادی استفاده از بتن بازیافتی به‌عنوان بتن جداول بتنی شهری بررسی شود. برای این منظور سه نوع طرح اختلاط، شامل بتن طبیعی به‌عنوان بتن شاهد و بتن بازیافتی و بتن الیافی بازیافتی شامل 100‌ درصد ریزدانه بازیافتی و 50‌ درصد درشت‌دانه بازیافتی برای سنین 7 و 28 روزه تحت آزمایش قرار گرفت. در ادامه، نتایج با آیین‌نامه و استانداردهای ملی و بین‌المللی در زمینه بتن برای استفاده در جداول شهری مقایسه شد. همچنین در این مقاله تخمین مقاومت فشاری 28 روزه به کمک شبکه‌های عصبی بررسی شده است. نتایج نشان داد که بتن بازیافتی و بتن الیافی بازیافتی با طرح اختلاط پیشنهادی، مقاومت فشاری بالاتری دارد. همچنین ضریب همبستگی تقریبا برابری در خروجی‌های آزمایش مقاومت فشاری 28 روزه حاصل از شبکه عصبی مصنوعی مشاهده شده است و نتایج 124 نمونه آزمایشگاهی با نتایج شبکه عصبی انطباق مناسب دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Proposed Mix Design of Recycled Concrete Used in Urban Concrete Tables Using Neural Network

نویسندگان [English]

  • Seyed Reza Salimbahrami 1
  • Reza Shakeri 2
  • Behzad Habibi Hajikolae 3
1 PhD, Department of Civil Engineering, Faculty of Imam Mohammad Baqer, Mazandaran Branch, Technical and Vocational University (TVU), Sari, Iran.
2 Undergraduate Student, Department of Civil Engineering, Faculty of Shahid Montazeri, Khorasan Razavi Branch, Technical and Vocational University (TVU), Mashhad, Iran.
3 M. Sc. ,Department of Civil Engineering, Faculty of Imam Mohammad Baqer, Mazandaran Branch, Technical and Vocational University (TVU), Sari, Iran.
چکیده [English]

The increasing growth of construction and use of concrete tables in urban and inter-city roads have led to the idea of ​​using recycled concrete in urban concrete tables. Therefore, in this research, an attempt was made to investigate the mechanical and economic parameters of using recycled concrete as concrete of urban concrete tables. For this purpose, three types of mixing schemes of natural concrete as control concrete, recycled concrete and recycled fiber concrete including 100% recycled fine-grained and 50% coarse-grained recycled concrete of 7 and 28 days old were tested. Then, the obtained results were compared with national and international regulations and standards in the field of concrete for use in urban tables. In addition, in this paper, the estimation of 28-day compressive strength with the help of neural networks was investigated. The findings showed that recycled concrete and recycled fiber concrete with higher mixing design have higher compressive strength. Furthermore, an almost equal correlation coefficient was observed in the outputs of the 28-day compressive strength test obtained from the artificial neural network and the results of 124 laboratory samples are in good agreement with the results obtained from the neural network.

کلیدواژه‌ها [English]

  • Recycled Concrete
  • Neural Network
  • Urban Concrete Tables
  • Recycling
  • Green concrete
  1.  

    1. Myers, T. (2019). The Greening of the Concrete Jungle: The Connection between Young Farmers and the Remedying of Food Deserts.
    2. Frondistion, K., & Yannas, S. (1980). Economics of Concrete Recycling in United States. Advanced Research institute problems in the recycling concrete, France, 163-168.
    3. Hanse, T. C. (1992). EditorRecycling of demolished concrete and Masonry. RILEM (The internationalunion of testing and Research laboratories for materials and structures), Reports, 3.
    4. [4] Aghili Lotf, M., & Ramezanianpour, M. (2018). Investigation on the Correlations between Different Physical and Mechanical Properties of Concrete Made with Recycled Concrete Aggregate.
      Modares Civil Engineering journal, 18(3), 153-167.
    5. De Brito, J., & Saikia, N. (2012). Recycled aggregate in concrete: Use of industrial, construction and demolition waste. Springer Science & Business Media.
    6. Debieb, F., Courard, L., Kenai, S., & Degeimbre, R. (2009). Roller compacted concrete with contaminated recycled aggregates. Construction and Building Materials, 23(11), 3382-3387.
    7. Dilbas, H., Çakır, Ö. & Atiş, C. D. (2019). Experimental investigation on properties of recycled aggregate concrete with optimized ball milling method. Construction and Building Materials, 212, 716-726.
    8. Dimitriou, G., Savva, P., & Petrou, M. F. (2018). Enhancing mechanical and durability properties of recycled aggregate concrete. Construction and Building Materials, 158, 228-235.
    9. Moghimi, M. Shafiq, P. Baranjian, J. & Nemati, K. (2011). Experimental study of the effect of using silica and superplasticizer on some mechanical properties of recycled concrete made of concrete. Ferdowsi Civil Engineering journal, 21(2).
    10. Choi, W. C., & Yun, H. D. (2012). Compressive behavior of reinforced concrete columns with recycled aggregate under uniaxial loading. Engineering structures, 41, 285-293.
    11. Wagih, A. M., El-Karmoty, H. Z., Ebid, M., & Okba, S. H. (2013). Recycled construction and demolition concrete waste as aggregate for structural concrete. HBRC journal, 9(3), 193-200.
    12. Rao, A., Jha, K. N., & Misra, S. (2007). Use of aggregates from recycled construction and demolition waste in concrete. Resources, conservation and Recycling, 50(1), 71-81.
    13. Radonjanin, V., Malešev, M., Marinković, S., & Al Malty, A. E. S. (2013). Green recycled aggregate concrete. Construction and Building Materials, 47, 1503-1511.
    14. González-Fonteboa, B., & Martínez-Abella, F. (2008). Concretes with aggregates from demolition waste and silica fume. Materials and mechanical properties. Building and Environment, 43(4), 429-437.
    15. Heeralal, M., Kumar, R. P., & Rao, Y. V. (2009). Flexural fatigue characteristics of steel fiber reinforced recycled aggregate concrete (SFRRAC). Facta universitatis-series: Architecture and Civil Engineering, 7(1), 19-33.
    16. Umadevi, C. V., & Gowda, M. R. (2014). Study on strength characteristics of recycled aggregate concrete using polypropylene fiber. Journal of Civil Engineering Technology and Research, 2(1), 259-266.
    17. Malešev, M., Radonjanin, V., & Marinković, S. (2010). Recycled concrete as aggregate for structural concrete production. Sustainability, 2(5), 1204-1225.
    18. Jain, N., & Garg, M. (2015). Development of Green Paving Blocks Using Recycled Aggregates: An Approach towards Sustainability. Journal of Environmental Science, Toxicology and Food Technology, 9(1), 52-61.
    19. Technical and Civil Deputy of Tehran. (2014). Technical specifications and matching sections of urban concrete tables and streams. Tehran, Iran.
    20. Committee, D. (1960). D 1129 - 60 Standard Definitions of Terms Relating to Industrial Water and Industrial Waste Water (pp. 391-397). West Conshohocken, PA: ASTM International.
    21. Iran, N. S. O. o. (2015a). Aggregates - Granulation of fine and coarse aggregates - Test method (Vol.4977). Tehran: Iran Institute of Standards and Industrial Research.
    22. Standard, A. S. T. M. (2014). C136/C136M-14.(2014). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates.
    23. ASTM, A. (2015). Standard test method for relative density (specific gravity) and absorption of coarse aggregate. West Conshohocken, PA: ASTM.
    24. ASTM, A. (2015). Standard test method for relative density (specific gravity) and absorption of coarse aggregate. West Conshohocken, PA: ASTM.
    25. Awasthi, A. V. K. M. S., & Goyal, S. K. N. O. Y. (2017). Recycled Aggregate from C&D Waste Modified by Dry Processing and Used as A Partial Replacement of Coarse Aggregate in Concrete.
    26. Li, T., Xiao, J., Zhu, C., & Zhong, Z. (2016). Experimental study on mechanical behaviors of concrete with large-size recycled coarse aggregate. Construction and Building Materials, 120, 321-328.
    27. Zhao, Z., Remond, S., Damidot, D., & Xu, W. (2015). Influence of fine recycled concrete aggregates on the properties of mortars. Construction and Building Materials, 81, 179-186.
    28. Zhou, C., & Chen, Z. (2017). Mechanical properties of recycled concrete made with different types of coarse aggregate. Construction and Building Materials, 134, 497-506.
    29. Salimbahrami, S. R., Shakeri, R., & Rezapour, M. A. (2017). A review of the mechanical properties of concrete with recycled aggregates. Paper presented at the International Conference on Contemporary Iranian Civil, Architecture and Urban Development, Tehran, Iran.
    30. Awchat, G. D., & Kanhe, N. M. (2013). Experimental studies on polymer modified steel fibre reinforced recycled aggregate concrete. International Journal of Application or Innovation in Engineering & Management, 2(12), 126-134.
    31. Standard, A. S. T. M. (2015). Standard test method for slump of hydraulic-cement concrete. ASTM Annual Book of ASTM Standards.
    32. Casuccio, M., Torrijos, M. C., Giaccio, G., & Zerbino, R. (2008). Failure mechanism of recycled aggregate concrete. Construction and Building Materials, 22(7), 1500-1506.
    33. Poon, C. S., Shui, Z. H., & Lam, L. (2004). Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Construction and Building Materials, 18(6), 461-468.
    34. ASTM C642-13. (2013). Standard test method for density, absorption, and voids in hardened concrete. West Conshohocken, PA: ASTM International.
    35. EN, B. (2002). 12390-3, Testing hardened concrete-Part 3: Compressive strength of test specimens. British Standards Institution.
    36. Iran, N. S. O. o. (2015b). Concrete - Determination of elastic modulus and Poisson's coefficient of
      concrete - Test method. Tehran :Iran Institute of Standards and Industrial Research.
    37. Price list of the basic unit of buildings in 2019. (2019). Tehran: Country Program and Budget
      Organization.
    38. Naderpour, H., Kheyroddin, A., & Amiri, G. G. (2010). Prediction of FRP-confined compressive strength of concrete using artificial neural networks. Composite Structures, 92(12), 2817-2829.
    39. Jariwala, V. H., Patel, P. V., & Purohit, S. P. (2013). Strengthening of RC beams subjected to combined torsion and bending with GFRP composites. Procedia Engineering, 51, 282-289.
    40. Etxeberria, M., Vázquez, E., Marí, A., & Barra, M. (2007). Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cement and concrete research, 37(5), 735-742.
    41. Evangelista, L., & de Brito, J. (2007). Mechanical behaviour of concrete made with fine recycled concrete aggregates. Cement and concrete composites, 29(5), 397-401.
    42. Yang, K. H., Chung, H. S., & Ashour, A. F. (2008). Influence of Type and Replacement Level of Recycled Aggregates on Concrete Properties.
    43. Corinaldesi, V. (2010). Mechanical and elastic behaviour of concretes made of recycled-concrete coarse aggregates. Construction and Building materials, 24(9), 1616-1620.
    44. Fonseca, N., De Brito, J., & Evangelista, L. (2011). The influence of curing conditions on the mechanical performance of concrete made with recycled concrete waste. Cement and Concrete Composites, 33(6), 637-643.
    45. Ferreira, L., De Brito, J., & Barra, M. (2011). Influence of the pre-saturation of recycled coarse concrete aggregates on concrete properties. Magazine of Concrete Research, 63(8), 617-627.
    46. Kou, S. C., & Poon, C. S. (2008). Mechanical properties of 5-year-old concrete prepared with recycled aggregates obtained from three different sources. Magazine of Concrete Research, 60(1), 57-64.
    47. Poon, C. S., Shui, Z. H., Lam, L., Fok, H., & Kou, S. C. (2004). Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cement and concrete research, 34(1), 31-36.
    48. Gómez-Soberón, J. M. (2002). Porosity of recycled concrete with substitution of recycled concrete aggregate: An experimental study. Cement and concrete research, 32(8), 1301-1311.
    49. Khatib, J. M. (2005). Properties of concrete incorporating fine recycled aggregate. Cement and concrete research, 35(4), 763-769.
    50. Fan, C. C., Huang, R., Hwang, H., & Chao, S. J. (2016). Properties of concrete incorporating fine recycled aggregates from crushed concrete wastes. Construction and Building Materials, 112, 708-715.
    51. Bosscher, P. J., Edil, T. B., & Kuraoka, S. (1997). Design of highway embankments using tire chips. Journal of geotechnical and geoenvironmental engineering, 123(4), 295-304.
    52. Milne, L. (1995, November). Feature selection using neural networks with contribution measures. In AI-CONFERENCE- (pp. 571-571). WORLD SCIENTIFIC PUBLISHING.