بررسی تجربی کوپلینگ موتور استرلینگ گاما برای تبدیل انرژی حرارتی به سرمایشی در شرایط مختلف آزمایشگاهی

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 دکتری، دپارتمان مهندسی مکانیک، آموزشکده شهید بهشتی پسران کرج، دانشگاه فنی وحرفه ای استان البرز، ایران.

2 دانشیار، گروه مهندسی مکانیک، واحد پردیس، دانشگاه آزاد اسلامی، تهران، ایران.

3 استادیار، گروه مهندسی مکانیک، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران.

4 استادیار، دانشکده مهندسی مکانیک، دانشگاه شهید رجایی، تهران، ایران.

چکیده

هدف اصلی از این تحقیق، بررسی تجربی اتصال دو موتور استرلینگ مشابه ST500 از نوع گاما و تبدیل انرژی حرارتی به سرمایشی است. در این تحقیق با استفاده از یک ساختار جدید و با استفاده از دو موتور استرلینگ به‌صورت کوپل در دما و فشارهای مختلف و استفاده از سوخت زیست‌توده در محدوده فشار متوسط منبع گرم موتور اول 4تا 8 بار، محدوده فشار متوسط منبع سرد موتور دوم 1 تا 4 بار و محدوده دمایی موتور گرم استرلینگ 480 تا 580 درجه سانتی‌گراد می‌توان به سرمایش مؤثری در موتور سرد رسید. در انجام آزمایش‌ها سعی شد تا میزان خطاها در قسمت‌های مختلف موتور از قبیل عایق‌کاری، نشتی سیال، لقی تسمه و دستگاه‌های اندازه‌گیری به کمتر از 9 درصد برسد. نتایج نشان داد که افزایش فشار متوسط گاز در منبع گرم موتور اول تا 8 بار و کاهش فشار متوسط گاز در منبع سرد موتور دوم تا 1بار، بالا بودن درجه حرارت منبع گرم تا 580 درجه سانتی‌گراد و استفاده از سیال عامل سبک مانند هلیوم در تولید سرمایش تا 16- درجه سانتی‌گراد مؤثرخواهد بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An experimental investigation into the coupling of gamma-type Stirling engine to convert thermal energy to cooling energy in different laboratory conditions

نویسندگان [English]

  • Ezatollah Hassanzadeh 1
  • Mehdi Aliehyaei 2
  • Saeed Jafari Mehrabadi 3
  • Arash Mohammadi 4
  • Hossein Mazaheri 3
1 PhD, Department of Mechanical Engineering, Faculty of Shahid Beheshti, Alborz Branch,Technical and Vocational University (TVU), Alborz, Iran.
2 Associate Professor, Department of Mechanical Engineering, Pardis Branch, Islamic Azad University, Pardis, Iran.
3 Assistant Professor, Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran.
4 Assistant professor, Department of Mechanical Engineering, Faculty of Chemical Engineering, Shahid Rajaee University, Tehran, Iran.
چکیده [English]

The main aim of this research was to experimentally investigate the two coupled identical ST500 gamma-type Stirling engines and convert thermal energy to cooling energy. Using a new structure and two coupled Stirling engines at different temperatures and pressures and use of biomass fuel within the 4 -8 bar average pressure range of the first engine hot source, the 1-4 bar average pressure range of the second engine cold source, and Stirling hot engine temperature range of 480-580 ºC, the effective cooling is obtained in the cold engine. In doing tests, attempts were made to reach lower than 9 percent error results in different parts of engine, including insulation, fluid leakage, belt loosing, and measurement devices. According to the obtained results, a 8 bar increase in the average pressure range of the gas in the first engine hot source, a 1 bar reduction in the average pressure range of the gas in the second engine cold source, the increased temperature of the hot source up to 580 ºC, and the use of the light operating fluid such as helium will affect the generation of cooling up to -16ºC.

کلیدواژه‌ها [English]

  • Gamma Stirling
  • couple
  • cooling
  • power supply
  • Biomass
  1.  

    1. Kongtragool. B., Wongwises. S. (2003). "A review of solar-powered Stirling engines and low temperature differential Stirling engines, and Sustainable Energy Reviews", 7 (2). 131-154.
    2. "Applications of the Stirling engine". (2018). Available https://en.wikipedia.org/wiki/Applications of the Stirling engine.
    3. Urieli. I., Berchowitz. D. M. (1984). Stirling cycle engine analysis: Taylor & Francis.
    4. Walker. G. (1973). Stirling-cycle machines. Oxford University Press.
    5. Thimsen. D. (2002). Stirling Engine Assessment.
    6. G. Schmidt. (1871). "The theory of Lehmann’s calorimetric machine", Zeitschrift Des Vereines Deutscher Ingenieure, 15 (1).
    7. Urieli. I., Berchowitz. D. M. (1984). "Stirling Cycle Engine Analysis", 86-124, Bristol: Adam Hilger LTD.
    8. Finkelstein. T. (1994). "Insights into the thermodynamics of Stirling cycle machines", Proceeding of 29th Intersociety Energy Conversion Engineering Conference, Monterey, California, 1829-1834.
    9. Prakash. S., Guruvayurappan. A. (2011). "Using Stirling Engine to Increase the Efficiency of an IC Engine", in The World Congress on Engineering 2011, London, U.K.
    10. Zia Bashar Hagh. M., Mahmoodi. M. (2012). "Numerical solution of beta type stirling engine by thermal receiver application for increasing efficiency and output power", Journal of Basic and Applied Scientific Research, 2 (2). 1395-1406.
    11. Valenti. G., Silva. P., Fergnani. N., Campanari. S., Ravida. A., Marcoberardino. G., Macchi. E. (2015). "Experimental and numerical study of a Microcogeneration Stirling unit under diverse conditions of the working fluid", Applied Energy, 160 (1). 920-929.
    12. Karami. R., Sayyaadi. H. (2015). "Optimal sizing of Stirling-CCHP systems for residential buildings at diverse climatic conditions", Applied Thermal Engineering, 89 (1). 377-393.
    13. Hooshang. M., Askari Moghadam. R., AlizadehNia. S., Masouleh. M. T. (2015). "Optimization of Stirling engine design parameters using neural networks". Renewable Energy, Vol. 74, 855–66.
    14. Hooshang. M., Askari Moghadam R., AlizadehNia. S. (2016). "Dynamic response simulation and experiment for gamma-type Stirling engine", Renewable energy, Vol. 86, 192-205.
    15. Amarloo. A., Keshavarz Valian. A., Batooei. A., Alizade Nia. S. (2016). "Thermodynamic analysis of performance parameter of a novel 3 cylinder Stirling engine configuration", Modares Mechanical Engineering, 16 (10). 448-458, (in Persian).
    16. Damirchi. H., Najafi. G., Alizadehnia. S., Mamat. R., Azmi W. H., Noor. M. M. (2016). "Micro Combined Heat and Power to provide heat and electrical power using biomass and Gamma-type Stirling engine", Applied Thermal Engineering, 1460-1469.
    17. Chahartaghi. M., Sheykhi. M. (2017). "Modeling of combined heating and power system driven by Stirling engine from the perspective of the fuel consumption and pollution emission", Modares Mechanical Engineering, 17 (10). 207-216, (in Persian)
    18. Jahani Kaldehi. B., Keshavarz. A., Safaei Pirooz. A., Batooei. A., Ebrahimi. M. (2017). "Designing a micro Stirling engine for cleaner production of combined cooling heating and power in residential sector of different climates", Journal of Cleaner Production, 154 (1). 502-516.
    19. Calise. F., Denticed Accadia. M., Libertini. L., Quiriti. E., Vanoli. R., Vicidomini. M. (2017). "Optimal operating strategies of combined cooling, heating and power systems, A case study for an engine manufacturing facility", Energy Conversion and Management ,Vol. 149, 1 October, 1066-1084.
    20. Berrin Erbay. L., Mete Ozturk. M., Dogan. B. (2017). "Overall performance of the duplex Stirling refrigerator", Energy Conversion and Management, Vol. 133, 196-203.
    21. Ansarinasab. H., Mehrpooya. M. (2018). "Investigation of a combined molten carbonate fuel cell, gas turbine and Stirling engine combined cooling heating and power (CCHP) process by exergy cost sensitivity analysis", Energy Conversion and Management, 291-303.
    22. Dai. D. D., Yuan. F., Long. R., Liu. Z. C., Liu. W. (2018). "Imperfect regeneration analysis of Stirling engine caused by temperature differences in regenerator", Energy Conversion and Management, Vol. 158, 15 February, 60-69.
    23. Katooli. M. H., Askari Moghadam. R., Hajinezhad. A. (2019). "Simulation and experimental evaluation of Stirling refrigerator for converting electrical/mechanical energy to cold energy", Energy Convers Management, Vol. 184, 15 March, 83-90.
    24. Hassanzadeh. E., aliehyaei. M., JafariMehrabadi. S., Mohammadi. A., Mazaheri. H. (2020). "Experimental investigation on the gamma model Stirling engine for cooling production using various gases". The Journal of Engine Research; Vol. 59, 17-28, (in Persian)
    25. Çengel. Y. A., Boles. M. A. (2015). Thermodynamics: an engineering approach, 8th edittion, New York: McGraw-Hill Education.
    26. Bergman. T. L., Incropera. F. P., DeWitt. D. P., Lavine. A. S. (2011). Fundamentals of heat and mass transfer, John Wiley and Sons.
    27. White. F. M. (1991). Viscous Fluid Flow, 2nd ed. McGraw-Hill.
    28. Hydrogensulfide. (2018). Available:https://en.wikipedia.org/wiki/Hydrogen_sulfide.
    29. Borgnakke. C., Sonntag. R. E. (2013). Fundamentals of Thermo dynamics, Wiley.