بهینه سازی پارامترهای عملکردی ماشینکاری تخلیه الکتریکی سوپر آلیاژ اینکونل 718 با استفاده از روش تاگوچی

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 استادیار، دپارتمان مهندسی مکانیک، دانشکده شهید منتظری مشهد، دانشگاه فنی و حرفه‌ای استان خراسان رضوی، ایران.

2 کارشناسی ، دپارتمان مهندسی مکانیک، دانشکده شهید منتظری مشهد، دانشگاه فنی و حرفه ای استان خراسان رضوی، ایران.

3 کارشناسی ارشد، دپارتمان مهندسی مکانیک، دانشکده شهید منتظری مشهد، دانشگاه فنی و حرفه ای استان خراسان رضوی، ایران.

چکیده

هدف از انجام این مطالعه، بهینه‏سازی پارامترهای عملیاتی فرایند ماشین‌کاری با تخلیه الکتریکی در سوپر آلیاژ Inconel 718 با استفاده از روش تاگوچی و تحلیل واریانس (ANOVA) است. ابتدا با استفاده از روش تاگوچی، چیدمان بهینه آزمایش‌ها تعیین گردید و سپس با انجام آزمایش‌ها و تحلیل واریانس، تأثیرات سهم هر پارامتر ورودی در خروجی فرایند تعیین شدند و در نهایت پارامترهای ورودی بهینه مشخص گردیدند. پارامترهای ورودی در این تحقیق شامل زمان روشنی پالس، فاکتور کار، ولتاژ گپ و جریان تخلیه می‏باشند. همچنین پارامترهای خروجی فرایند، نسبت سایش الکترود، نرخ براده‏برداری ماده و بررسی سطح نمونه (توپوگرافی) در نظر گرفته شدند. توپوگرافی، سطح مواردی از جمله زبری سطح، ضخامت لایه دپو شده و تراکم ترک نمونه‎های ماشین‌کاری شده با جزئیات را بررسی می‏کند. به‌علاوه مدل‎سازی و تحلیل رگرسیون برای پیش‌بینی رفتار و مقادیر پارامترهای خروجی فرایند انجام گردید. نتیجه بهینه‌سازی پارامترهای عملیاتی فرایند شامل میزان سایش الکترود کمتر، زبری سطح بهتر و ریزساختار همگن و عاری از ترک است که با رفتار آلیاژ Ti-6Al-4V مقایسه گردیده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Applying Taguchi method to optimize EDM parameters on Inconel 718 super alloy

نویسندگان [English]

  • Karim Aliakbari 1
  • Mohammad Reza Saberi 2
  • Morteza Andalib 3
1 Assistant Professor, Department of Mechanical Engineering, Faculty of Montazeri, Khorasan Razavi Branch, Technical and Vocational University (TVU), Mashhad, Iran.
2 B. Sc. ,Department of Mechanical Engineering, Faculty of Montazeri, Khorasan Razavi Branch, Technical and Vocational University (TVU), Mashhad, Iran.
3 M. Sc. ,Department of Mechanical Engineering, Faculty of Montazeri, Khorasan Razavi Branch, Technical and Vocational University (TVU), Mashhad, Iran.
چکیده [English]

The purpose of this study was to optimize the operational parameters of the electrical discharge machining (EDM) process in the Inconel 718 super alloy using the Taguchi method and analysis of variance (ANOVA). First, using Taguchi method, the optimal order of experiments was determined, and then by performing experiments and analysis of variance, the effects of the contribution of each input parameter on the process output were determined, and finally the optimal input parameters were determined. Input parameters in this study included pulse duration, work factor, gap voltage and discharge current. Furthermore, process output parameters, electrode wear ratio, material removal rate and topography of the sample surface were taken into consideration. From the surface topography point of view, items such as surface roughness, recast layer thickness and crack density of machined samples were studied in detail. In addition, modeling and regression analysis was performed to predict the behavior and values of process output parameters. The results of optimizing the operational parameters of the process indicated less electrode wear, better surface roughness and homogeneous and crack-free microstructure compared with the behavior of the Ti-6Al-4V alloy. 

کلیدواژه‌ها [English]

  • EDM
  • Inconel 718 Super Alloy
  • Experiment design
  • Taguchi method
  • Regression analysis
References
[1] Rahul, Srivastava, A., Kumar Mishra, D., Chatterjee, S., Datta, S., Bhusan Biswal, B., & Sankar Mahapatra, S. (2018). Multi-Response Optimization during Electro-Discharge Machining of Super Alloy Inconel 718: Application of PCA-TOPSIS. Materials Today: Proceedings, 5(2, Part 1), 4269-4276. https://doi.org/10.1016/j. matpr.2017.11.691
[2] Sahu, B. K., Datta, S., & Mahapatra, S. S. (2018). On Electro-Discharge Machining of Inconel 718 Super Alloys: An Experimental Investigation. Materials Today: Proceedings, 5(2, Part 1), 4861-4869. https://doi.org/10.1016/j.matpr.2017.12.062
[3] Hasçalık, A., & Çaydaş, U. (2007). Electrical discharge machining of titanium alloy (Ti–6Al–4V). Applied Surface Science, 253(22), 9007-9016. https://doi.org/10.1016/j. apsusc.2007.05.031
[4] Jabbaripour, B., Sadeghi, M., Shabgard, M. R., & Faridvand, S. (2011). Investigating the Effects of Tool Materials on the Properties of Electrical Discharge Machining of γ–TiAl Intermetallic. Modares Mechanical Engineering, 11(2), 135-146. http://mme.modares.ac.ir/article-15-6162-en.html
[5] Ahmad, S., & Lajis, M. A. (2013, July 1–4). Electrical discharge machining (EDM) of Inconel 718 by using copper electrode at higher peak current and pulse duration 2nd International Conference on Mechanical Engineering Research (ICMER 2013), Kuantan, Pahang, Malaysia.  https://iopscience.iop.org/article/10.1088/1757-899X /50/1/012062/pdf
[6] Hadad, M., Bui, L., & Nguyen, C. (2018). Experimental investigation of the effects of tool initial surface roughness on the electrical discharge machining (EDM) performance. The International Journal of Advanced Manufacturing Technology, 95(1), 2093-2104. https://doi.org/10.1007/s00170-017-1399-2
[7] Jadam, T., Sahu, S., Datta, S., & Masanta, M. (2019). EDM performance of Inconel 718 superalloy: application of multi-walled carbon nanotube (MWCNT) added dielectric media. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(8), 1-20. https://doi.org/10.1007/s40430-019-1813-9
[8] Ayesta, I., Izquierdo, B., Sanchez, J., Ramos, J. M., Plaza, S., Pombo, I., Ortega, N., Bravo, H., Fradejas, R., & Zamakona, I. (2013). Influence of EDM Parameters on Slot Machining in C1023 Aeronautical Alloy. Procedia CIRP, 6, 129–134. https:// doi.org/10.1016/j.procir.2013.03.059
[9] Gopalakannan, S., Senthilvelan, T., & Ranganathan, S. (2012). Modeling and Optimization of EDM Process Parameters on Machining of Al 7075-B4C MMC Using RSM. Procedia Engineering, 38, 685-690. https://doi.org/10.1016/j.proeng. 2012.06.086
[10] Alidoosti, A., Ghafari-Nazari, A., Moztarzadeh, F., Jalali, N., Moztarzadeh, S., & Mozafari, M. (2013). Electrical discharge machining characteristics of nickel–titanium shape memory alloy based on full factorial design. Journal of Intelligent Material Systems and Structures, 24(13), 1546-1556. https://doi.org/10.1177/104 5389X13476147
[11] Uhlmann, E., & Domingos, D. C. (2013). Development and Optimization of the Die-Sinking EDM-Technology for Machining the Nickel-based Alloy MAR-M247 for Turbine Components. Procedia CIRP, 6, 180-185. https://doi.org/10.1016/j.procir. 2013.03.102
[12] Rajmohan, T., Prabhu, R., Rao, G. S., & Palanikumar, K. (2012). Optimization of Machining Parameters in Electrical Discharge Machining (EDM) of 304 Stainless Steel. Procedia Engineering, 38, 1030-1036. https://doi.org/10.1016/j.proeng.2012 .06.129
[13] Lin, Y.-C., Chen, Y.-F., Wang, D.-A., & Lee, H.-S. (2009). Optimization of machining parameters in magnetic force assisted EDM based on Taguchi method. Journal of Materials Processing Technology, 209(7), 3374-3383. https://doi.org/10.1016/j.jm atprotec.2008.07.052
[14] Lin, J. L., & Lin, C. L. (2002). The use of the orthogonal array with grey relational analysis to optimize the electrical discharge machining process with multiple performance characteristics. International Journal of Machine Tools and Manufacture, 42(2), 237-244. https://doi.org/10.1016/S0890-6955(01)00107-9
[15] ASTM International. (2017, Jun 22). ASTM E415-15- Standard Test Method for Analysis of Carbon and Low-Alloy Steel by Spark Atomic Emission Spectrometry. ASTM International. https://www.astm.org/e0415-15.html
[16] Document Center Inc. (2014). ASTM-E1086-14, Standard Test Method for Analysis of Austenitic Stainless Steel by Spark Atomic Emission Spectrometry, Document Center, Inc. Document Center Inc, ASTM International. https://www.document-center.com/standards/show/ASTM-E1086
[17] ASTM International. (2018, November 15). ASTM B670-07, Standard Specification for Precipitation-Hardening Nickel Alloy (UNS N07718) Plate, Sheet, and Strip for High-Temperature Service. ASTM International. https://www.astm.org/b0670-07r18.html
[18] Kao, J., Tsao, C., Wang, S., & Hsu, C. (2010). Optimization of the EDM Parameters on Machining Ti-6Al-4V with Multiple Quality Characteristics. The International Journal of Advanced Manufacturing Technology, 47(1), 395-402. https://doi.org/10. 1007/s00170-009-2208-3
[19] Rahul, Datta, S., Biswal, B., & Mahapatra, S. (2017). A Novel Satisfaction Function and Distance-Based Approach for Machining Performance Optimization During Electro-Discharge Machining on Super Alloy Inconel 718. Arabian Journal for Science and Engineering, 42, 1999-2020. https://doi.org/10.1007/s13369-017-2422-5
[20] ISO. (2009, June). ISO 4287:1997, Geometrical Product Specifications (GPS) — Surface texture: Profile method — Terms, definitions and surface texture parameters. In: ISO.
[21] Srinivasa Rao, P., Ramji, K., & Satyanarayana, B. (2016). Effect of wire EDM conditions on generation of residual stresses in machining of aluminum 2014 T6 alloy. Alexandria Engineering Journal, 55(2), 1077-1084. https://doi.org/10.1016/ j.aej.2016.03.014
[22] Asadi Boroojeni, B., & Mozafari Vanani, L. (2020). The effect of tool geometry on the tensile strength of polypropylene Components Welded by Friction Stir Welding Method. Karafan Quarterly Scientific Journal, 17(1), 143-155. https://doi.org/10. 48301/kssa.2020.112761
[23] Aliakbari, K. (2018). Failure analysis of four-cylinder diesel engine crankshaft. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(1), 30. https:// doi.org/10.1007/s40430-018-1536-3
[24] Aliakbari, K., & Mamaghani, T. (2020). Analysis of fatigue crack growth in cylinder head bolts of gasoline engine based on experimental data. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(5), 1-12. https://doi.org/10.10 07/s40430-020-02326-1
[25] Mohammad Khani Haji KhajeLu, B., & Maleki, M. (2020). Experimental Investigation of Dynamic Density of Aluminum Powder under High Speed Loading. Karafan Quarterly Scientific Journal, 17(1), 157-175. https://doi.org/10.48301/kssa.2020.112762