طراحی سیستم کنترل کننده PID مرتبه کسری برای کنترل سرعت موتور جریان مستقیم مغناطیس دائم بدون جاروبک (PMBLDC) با استفاده از الگوریتم های فراابتکاری

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 عضو هیئت علمی، دپارتمان مهندسی برق، آموزشکده فنی پسران قم ، دانشگاه فنی و حرفه ای استان قم، ایران.

2 استادیار، دپارتمان مهندسی برق و کامپیوتر، دانشکده دکتر شریعتی، دانشگاه فنی و حرفه ای استان تهران، ایران.

چکیده

امروزه وسایل نقلیه، به‌طور روزافزونی با موتورهای DC مغناطیس دائم بدون جاروبک به‌واسطه ماهیت عملکرد بدون سنسور، مجهز شده‌اند. کنترل‌کننده‌های موتور BLDC می‌توانند کنترل سرعت و موقعیت مؤثر را بدون سنسور موقعیت نصب‌شده روی شفت، در سیستم فیدبک حلقه بسته عمل کنند. کنترل‌کننده PID مرتبه کسری، از رایج‌ترین نمونه‌های الگوریتم کنترل بازخوردی است که در بسیاری از فرایندهای کنترلی، کاربرد دارد. درایو موتور بدون سنسور BLDC کنترل بهینه بهتری روی سرعت روتور و دقت آن با کمک کنترل‌کننده PID مرتبه کسری (FOPID) دارد. در این مقاله با استفاده از دو الگوریتم بهینه‌سازی فراابتکاری، پارامترهای کنترل‌کننده FOPID شامل زمان نشست، زمان خیز، اورشوت و پایداری پاسخ پله سیستم مذکور بهینه شده است. نتایج نشان می‌دهد پاسخ پله موتور  PMBLDCبا استفاده از الگوریتم ژنتیک پیشنهادی در مقایسه با سایر روش‌های موجود، عملکرد کنترلی مناسب‌تری را ارائه می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Designing of PIλDδ controller for PMBLDC motor using metaheuristic algorithms

نویسندگان [English]

  • Morteza Abdolhosseini 1
  • Rohollah Abdollahi 1
  • Meraj Rajaee 2
1 Faculty Member, Department of Electrical Engineering, Qom Boys Technical College, Technical and Vocational University (TVU), Qom, Iran.
2 Assistant Professor, Department of Electrical and Computer Engineering, Faculty of Dr. Shariaty, Tehran Branch, Technical and Vocational University (TVU), Tehran, Iran.
چکیده [English]

Today, vehicles are increasingly equipped with brushless DC permanent magnet motors due to the nature of sensorless operation. BLDC motor controllers can operate the effective speed and position control in a closed loop feedback system without a position sensor mounted on the shaft. The fractional order PID controller is one of the most common examples of a feedback control algorithm used in many control processes. The BLDC sensorless motor drive has better optimal control over the rotor speed and accuracy with the help of PID fractional controller (FOPID). In this paper, using two meta-heuristic optimization algorithms, the FOPID control parameters including sitting time, rising time, overload and step response stability of the mentioned system were optimized. The results show that the PMBLDC stepper motor response using the proposed genetic algorithm provides better control performance compared to other available methods.

کلیدواژه‌ها [English]

  • PMBLDC
  • Fractional Order Proportional Integral Derivative (FOPID) Controller
  • Metaheuristic Algorithm
  • Genetic Algorithm
  • differential evolutionary algorithm
  1.  

    1. Taher, S. A, Shibani, M. R., & Lalehzar, G. (2015). “Optimization of BLDC Motor using the Pareto Method Based on SOA”, Computational intelligence in electrical engineering, vol. 3, pp. 55-66.
    2. Khubalkar, S., Junghare, A., Aware, M., & Das, S., (2017). “Modeling and control of a permanent-magnet brushless DC motor drive using a fractional order proportional-integral-derivative controller”, Turkish Journal of Electrical Engineering & Computer Sciences, 25, 4223 – 4241.
    3. Singh, A. K., & Pattnaik, S. (2020). “Matrix Converter Operated Hysteresis Current Controlled BLDC Motor Drive for Efficient Speed Control and Improved Power Quality”, Procedia Computer Science, vol. 167, pp. 541–550.
    4. García, M., Ponce, P., Soriano, L. A, Molina, A., Cleery, B. M., & Romero, D. (2019). “Lifetime Improved in Power Electronics for BLDC Drives using Fuzzy Logic and PSO”, IFAC Papers OnLine, vol. 52, pp. 2372–2377.
    5. Bhuiyan, M. F., Uddin, M. R., Tasneem, Z., Hasan, M., & Salim, K. M. (2018). “Design, Code Generation and Simulation of a BLDC Motor Controller usuuing PIC Microcontroller”, International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering - (ICRIEECE), pp. 1427-1431.
    6. Bhuiyan, M. F., Sakib, N., Uddin, M. R., & Salim, K. M. (2019). “Experimental Results of a locally developed BLDC Motor Controller for electric tricycle”, 1st International Conference on Advances in Science, Engineering and Robotics Technology.
    7. Walekar, M. V. R., & Murkute, Prof. S. V. (2018). “Speed Control of BLDC Motor using PI & Fuzzy Approach: A Comparative Study”, International Conference on Information, Communication, Engineering and Technology, Aug 29-31.
    8. Ardestani, M., A. & Vakili, A., (2020). “Output feedback Controller design for HVAC system with delayed based Robust control approach”, Quarterly Research Journal of Technical and Vocational University, 17, 89-100.
    9. Sabri, M., (2017) “Stabilization and control of the power system using meta-heuristic algorithms”, Quarterly Research Journal of Technical and Vocational University, 14, 33-55.
    10. Quwaider, M., & Shatnawi, Y. (2020). “Neural Network Model as Internet of Things Congestion Control using PID Controller and Immune-Hill-Climbing Algorithm”, Simulation Modelling Practice and Theory, vol. 101.
    11. Shia, Q., Lama, H.K., Xuana, C., & Chena, M. (2020). “Neural Network Model as Internet of Things Congestion Control using PID Controller and Immune-Hill-Climbing Algorithm”, Simulation Modelling Practice and Theory, vol. 101, April.
    12. Quwaider, M., & Shatnawi, Y. (2020). “Neural Network Model as Internet of Things Congestion Control using PID Controller and Immune-Hill-Climbing Algorithm”, Simulation Modelling Practice and Theory, vol. 101, May.
    13. Farahani, M., & Ganjefar, S., (2012). “Intelligent control of static synchronous series compensator via an adaptive self-tuning PID controller for suppression of torsional oscillations” International Journal of Control, Automation, and Systems (IJCAS), 10, 744–752.
    14. Taghizadeh, M., & Yarmohammadi, M. J., (2018). “Development of a Self-tuning PID Controller on Hydraulically Actuated Stewart Platform Stabilizer with Base Excitation”, International Journal of Control, Automation, and Systems, 16, 2990–2999.
    15. Merrikh-Bayat, F., Mirebrahimi, N. & Khalili, M.R., (2015). “Discrete-time fractional-order PID controller: Definition, tuning, digital realization and some applications”, International Journal of Control, Automation, and System, 13, 81–90.
    16. Memon, F., & Shao, C., (2020). “An Optimal Approach to Online Tuning Method for PID Type Iterative Learning Control”, International Journal of Control, Automation, and Systems, 18, 1926–1935.
    17. Vanchinathan, K. & Valluvan, K., R., (2018). “A Metaheuristic Optimization Approach for Tuning of Fractional-Order PID Controller for Speed Control of Sensorless BLDC Motor”, Journal of Circuits, Systems, and Computers, 27, 1-19.
    18. Tepljakov A., Petlenkov, E. & Belikov, J., (2011). “FOMCON: a MATLAB toolbox for fractional-order system identification and control”, International Journal of Microelectronics and Computer Science, 2(2):51–62.
    19. Khubalkar, S. W., Chopade, A. S., & Junghare, A. S., (2016). “Design and Tuning of Fractional Order PID Controller for Speed control of Permanent Magnet Brushless DC Motor”, IEEE First International Conference on Control, Measurement and Instrumentation (CMI), 8-10 Jan.
    20. Krohling, R.A., & Rey, J.P. (2001). “Design of optimal disturbance rejection PID controllers using genetic algorithms”. IEEE Transactions on Evolutionary Computation, Vol5 (1), pp78–82.
    21. Oustaloup, A., Levron, F., Nanot, F.M., & Mathieu, B., (2000). “Frequency band complex noninteger differentiator: characterization and synthesis”, IEEE Transactions on Circuits and Systems. I, 47(1), pp. 25–39.
    22. Momani, S., Khazali, E., & Batiha, I. M., (2019). “Tuning PID and PIλDδ Controllers Using Particle Swarm Optimization Algorithm via El-Khazali's Approach”, AIP Conference Proceedings.
    23. Premkumar, K., & Manikandan, B.V., (2016). “Bat algorithm optimized fuzzy PD based speed controller for brushless direct current motor”, Engineering Science and Technology, an International Journal, Vol 19, pp 818-840.