مطالعه اجمالی ایده های جدید و کاربردی میراگرهای اصطکاکی جهت کنترل ارتعاش غیرفعال سازه ها

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 دانشجوی دکتری سازه، دپارتمان مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه رازی، کرمانشاه، ایران.

2 استادیار، دپارتمان مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه رازی، کرمانشاه، ایران.

چکیده

امروزه یکی از معضلات موجود برای مهندسان و طراحان سازه، کاهش ارتعاشات ناشی از نیروهای جانبی نظیر زلزله و باد به سازه می‌باشد. از طرفی، با توجه به اینکه طراحی و ساخت سازه‌های بلند، یکی از روش‌های متداول استفاده از فضاهای شهری با جمعیت زیاد می‌باشد، ضرورت و اهمیت شناخت روش‌های کنترل ارتعاشات سازه بیش‌ازپیش احساس می‌شود. یکی از روش‌های کنترل ارتعاش سازه، روش کنترل غیرفعال، با استفاده از میراگرهای اصطکاکی می‌باشد. در این پژوهش، تمرکز اصلی روی کاربرد و عملکرد میراگرهای اصطکاکی، ایده‌های جدید برای استفاده از پدیده اصطکاک به‌منظور کنترل ارتعاشات سازه و معضلات طراحی سازه‌های دارای میراگر اصطکاکی می‌باشد. برای این منظور ابتدا سعی می‌شود که به مفاهیم مهم در کنترل ارتعاشات اشاره شود، سپس اهداف، روش کار و نتایج پژوهش‌های موجود متعدد، بررسی گردد تا دید روشنی از میراگرهای اصطکاکی برای مهندسان سازه فراهم شود و نیز شروعی باشد بر تحقیقات آینده که در آنها به توسعه و بهبود عملکرد میراگرهای اصطکاکی پرداخته می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

General Study of New Ideas and Practical of Friction Dampers for Passive Vibration Control of Structures

نویسندگان [English]

  • Reza Moradi 1
  • Ebrahim Khalilzadeh Vahidi 2
1 PhD Student in Structural Engineering, Department of Civil Engineering, Faculty of Engineering, Razi University, Kermanshah, Iran.
2 Assistant Professor, Department of Civil Engineering, Faculty of Engineering, Razi University, Kermanshah, Iran.
چکیده [English]

Nowadays one of the challenges that engineers and structural designers encounter is reduced vibrations of structures due to lateral forces such as earthquakes and winds. Taking into consideration that the design and construction of tall buildings is one of the most common methods of land-use in highly populated urban areas, the necessity and importance of identifying methods of controlling structural vibrations is felt more keenly than before. One of the methods of structural motion control is passive structural motion control with friction dampers. In this study, the main focus on the application and performance of friction dampers is new ideas for using the friction phenomenon to control structural vibrations and the design challenges of structures with friction dampers. For this purpose, first, we try to point out the important concepts in vibration control. Then, the goals, methods and results of various existing researches are examined to provide a clear view of friction dampers for structural engineers and as a start for future research to develop and improve the performance of friction dampers.

کلیدواژه‌ها [English]

  • Structural vibration
  • Passive control
  • Friction damper
  1.  

    1. khalilzadehvahidi, e., khalil zadeh vahidi, p., & Moradi, R. (2019). Performance Pathology of Historic Adobe Structures and Their Methods of Retrofitting. karafan scientific semi-annual, 16(45), 53-66. (in persian)
    2. Zare, M., Kamranzad, F., Parcharidis, I., & Tsironi, V. (2017). Preliminary report of Mw7. 3 Sarpol-e Zahab, Iran earthquake on November 12, 2017. EMSC Report, 1
    3. Miyamjima, M., Fallahi, A., Ikemoto, T., Samaei, M., Karimzadeh, S., Setiawan, H., . . . Karashi, J. (2018). Site investigation of the Sarpole-Zahab earthquake, Mw 7.3 in SW Iran of November 12, 2017. JSCE J. Disaster FactSheets.
    4. Hashemi, B. H., & Kiany, B. K. (2019). Performance of Steel Structures and Associated Lessons to be Learned from November 12, 2017, Sarpol-e Zahab-Ezgeleh Earthquake (MW 7.3). Journal of Seismology and Earthquake Engineering, 20(3), 33
    5. Hashemi, B. H., Kiany, B. K., & Farshchi, H. (2019). Performance of RC Structures and Associated Lessons to be Learned from November 12, 2017, Sarpol-e Zahab-Ezgeleh Earthquake (MW 7.3). Journal of Seismology and Earthquake Engineering, 20(3), 19-32.
    6. Vetr, M. G., Saeidian, M., & Naserpour, A. (2019). The Main Reasons for Great Damages of Reinforced Concrete Buildings on 12th November 2017, Sarpol-e Zahab Earthquake. Journal of Seismology and Earthquake Engineering, 20(3), 73-92.
    7. Soong, T. T., & Costantinou, M. C. (2014). Passive and active structural vibration control in civil engineering (Vol. 345): Springer.
    8. Spencer Jr, B., & Nagarajaiah, S. (2003). State of the art of structural control. Journal of Structural Engineering, 129(7), 845-856.
    9. Soong, T. (1988). State-of-the-art review: active structural control in civil engineering. Engineering structures, 10(2), 74-84.
    10. Masoumnezhad, M. (2017). Robust control for the indefinite model of the semi-active suspension system. karafan scientific semi-annual, 14(42), 57-79. (in persian)
    11. Chen, Y., Chen, C., Jiang, H., Liu, T., & Wan, Z. (2019). Study of an innovative graded yield metal damper. Journal of Constructional Steel Research, 160, 240-254.
    12. Anoushehei, M., Daneshjoo, F., Mahboubi, S., & Hashemi, M. (2018). Empirical evaluation of cyclic behavior of rotational friction dampers with different metal pads. Scientia Iranica, 25(6), 3021-3029.
    13. Gholizad, A., & Morawej Nekoo, M. (2018). Seismic Performance of a Novel Configuration of Rotational Friction Damper in X Bracings. Amirkabir Journal of Civil Engineering, 49(4), 653-664. doi:10.22060/ceej.2017.8672.4555. (in persian)
    14. Bonchev, G., Belev, B., & Mualla, I. (2017). Linked columns with friction dampers as a technique for seismic retrofit of steel moment resisting frames. ce/papers, 1, 3092-3099. doi:10.1002/cepa.361
    15. Hadianfard, m. a. (2015). Rehabilitation of Steel Structures by Using the Rotational Friction Dampers. Journal Of Ferdowsi Civil Engineering, 26(2), 152-162. doi:10.22067/civil.v26i2.49196(in persian)
    16. Barmo, A., Mualla, I. H., & Hasan, H. T. (2014). The Behavior of Multi-Story Buildings Seismically Isolated System Hybrid Isolation (Friction, Rubber and with the Addition of Rotational Friction Dampers). Open Journal of Earthquake Research, 4(01), 1.
    17. Shirkhani, A., Mualla, I. H., Shabakhty, N., & Mousavi, S. R. (2015). Behavior of steel frames with rotational friction dampers by endurance time method. Journal of Constructional Steel Research, 107, 211-222.
    18. Sanati, M., Khadem, S., Mirzabagheri, S., Sanati, H., & Khosravieh, M. (2014). Performance evaluation of a novel rotational damper for structural reinforcement steel frames subjected to lateral excitations. Earthquake Engineering and Engineering Vibration, 13(1), 75-84.
    19. Mirzabagheri, S., Sanati, M., Aghakouchak, A., & Khadem, S. (2015). Experimental and numerical investigation of rotational friction dampers with multi units in steel frames subjected to lateral excitation. Archives of civil and mechanical engineering, 15(2), 479-491.
    20. Montazer, M. A., Shirkhani, A., Moghaddam, M. H. M., & Rahmani, S. Incremental Dynamic Analysis of Steel Frames Equipped With Rotational Friction Dampers.
    21. Papadopoulos, P. K., Salonikios, T. N., Dimitrakis, S. A., & Papadopoulos, A. P. (2013). Experimental investigation of a new steel friction device with link element for seismic strengthening of structures. Structural Engineering and Mechanics, 46(4), 000-000.
    22. Monir, H. S., & Zeynali, K. (2013). A modified friction damper for diagonal bracing of structures. Journal of Constructional Steel Research, 87, 17-30.
    23. Roh, J.-E., Hur, M.-W., Choi, H.-H., & Lee, S.-H. (2018). Development of a Multiaction Hybrid Damper for Passive Energy Dissipation. Shock and Vibration, 2018.
    24. Latour, M., D’Aniello, M., Zimbru, M., Rizzano, G., Piluso, V., & Landolfo, R. (2018). Removable friction dampers for low-damage steel beam-to-column joints. Soil Dynamics and Earthquake Engineering, 115, 66-81.
    25. Zimbru, M., D’Aniello, M., Martino, A. D., Latour, M., Rizzano, G., & Piluso, V. (2018). Investigation on friction features of dissipative lap shear connections by means of experimental and numerical tests. The Open Construction & Building Technology Journal, 12(1).
    26. Mirzaeefard, H., Mirtaheri, S. M., & Rahmani Samani, H. (2017). Response Modification Factor of Steel Structures Equipped with Cylindrical Frictional Dampers. Amirkabir Journal of Civil Engineering, 49(3), 453-462. doi:10.22060/ceej.2016.689. (in persian)
    27. Kim, J., & Kim, S. (2017). Performance-based seismic design of staggered truss frames with friction dampers. Thin-Walled Structures, 111, 197-209.
    28. Wang, G., Wang, Y., Yuan, J., Yang, Y., & Wang, D. (2017). Modeling and experimental investigation of a novel arc-surfaced frictional damper. Journal of Sound and Vibration, 389, 89-100.
    29. Lee, J., Kang, H., & Kim, J. (2017). Seismic performance of steel plate slit-friction hybrid dampers. Journal of Constructional Steel Research, 136, 128-139.
    30. Martínez, C. A., & Curadelli, O. (2017). Testing and performance of a new friction damper for seismic vibration control. Journal of Sound and Vibration, 399, 60-74.
    31. Bayat, M., & Zahrai, M. (2016). Impact of Friction Dampers on Improving Seismic Performance of Rigid and Semi-Rigid. journal of structure & steel, 1395(19), 67-75.
    32. EZzati, R., Monir, H., & Amiri, G. R, (2017).'Experimental Studies of New Hybrid Inertia Rotational Friction Damper and the Compare of It’s Performance with Inertia Rotational Viscous Damper. journal of structure & steel, 1395 (20), 23-30.
    33. Lee, C.-H., Kim, J., Kim, D.-H., Ryu, J., & Ju, Y. K. (2016). Numerical and experimental analysis of combined behavior of shear-type friction damper and non-uniform strip damper for multi-level seismic protection. Engineering structures, 114, 75-92.
    34. Samani, H. R., Mirtaheri, M., & Zandi, A. P. (2015). Experimental and numerical study of a new adjustable frictional damper. Journal of Constructional Steel Research, 112, 354
    35. Kazemia, M. T., & Hoseini, H. (2015). Performance Evaluation of Viscoelastic and Friction Passive Damping System in Steel Structures. Journal of Structural Engineering and Geo-Techniques, 5(2), 1-23.
    36. Bagheri, S., Barghian, M., Saieri, F., & Farzinfar, A. (2015). U-shaped metallic-yielding damper in building structures: Seismic behavior and comparison with a friction damper. Paper presented at the Structures.
    37. Mirzaeefard, H., & Masoud Mirtaheri, M. M. (2016). Evaluation of Seismic Behavior and Select Optimal Situation of Cylindrical Frictional Dampers in Steel Structures. Journal of Structural and Construction Engineering, 2(4), 18-30. (in persian)
    38. Zahrai, S. M., & Alaei, H. (2016). RESPONSE MODIFICATION FACTOR FOR DUAL SYSTEM OF MEDIUM DUCTILITY STEEL MOMENT FRAME CONCENTRIC BRACED WITH PALL FRICTION DAMPER. Sharif Journal of Civil Engineering, 31.2(4.2), 91-99. (in persian)
    39. Mahmoudi, M., Mirzaei, A., & Vosough, S. (2013). Evaluating equivalent damping and response modification factors of frames equipped by pall friction dampers. Journal of Rehabilitation in Civil Engineering, 1(1), 78-92.
    40. Borzouie, J., & S.Moghadam, A. (2012). TORSIONAL CONTROL OF MASS ECCENTRIC ONE STORY BUILDINGS BY FRICTION DAMPERS. Sharif Journal of Civil Engineering, Volume 2-28(1), 9-15. (in persian)
    41. Wu, B., Zhang, J., Williams, M., & Ou, J. (2005). Hysteretic behavior of improved Pall-typed frictional dampers. Engineering structures, 27(8), 1258-1267.
    42. Nabid, N., Hajirasouliha, I., & Petkovski, M. (2019). Simplified Method for Optimal Design of Friction Damper Slip Loads by Considering Near-Field and Far-Field Ground Motions. Journal of Earthquake Engineering, 1-25.
    43. Shirai, K., Nagaoka, A., Fujita, N., & Fujimori, T. (2019). Optimal Damper Slip Force for Vibration Control Structures Incorporating Friction Device with Sway-Rocking Motion Obtained Using Shaking Table Tests. Advances in Civil Engineering, 2019.
    44. Ontiveros-Pérez, S. P., Miguel, L. F. F., & Miguel, L. F. F. (2017). Robust Simultaneous Optimization of Friction Damper for the Passive Vibration Control in a Colombian Building. Procedia engineering, 199, 1743-1748.
    45. Bagheri, S., Hadidi, A., & Bastami, N. (2015). Determination of Slip Load of Friction Dampers Based on Target Ductility in Different Stories of Building Frames. Journal of Civil and Environmental Engineering, 45.2(79), 1-11. (in persian)
    46. Haghollahi, A., & Karami, S. (2014). Study Of Application Of Fbp Friction Damper In A Chevron Brace For Steel Frame RehabilitatiON. Sharif Journal of Civil Engineering, Volume 30-2(2), 125-132. . (in persian)